sulpha commited on
Commit
4ed06b9
·
1 Parent(s): faf8539

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +121 -0
app.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ==========================================================
3
+ Gradio demo to Plot multi-class SGD on the iris dataset
4
+ ==========================================================
5
+
6
+ Plot decision surface of multi-class SGD on iris dataset.
7
+ The hyperplanes corresponding to the three one-versus-all (OVA) classifiers
8
+ are represented by the dashed lines.
9
+
10
+ Created by Syed Affan <saffand03@gmail.com>
11
+
12
+ """
13
+ import gradio as gr
14
+ import numpy as np
15
+ import matplotlib.pyplot as plt
16
+ from sklearn import datasets
17
+ from sklearn.linear_model import SGDClassifier
18
+ from sklearn.inspection import DecisionBoundaryDisplay
19
+ import matplotlib.cm
20
+
21
+ def make_plot(alpha,max_iter,Standardize):
22
+ # import some data to play with
23
+ iris = datasets.load_iris()
24
+ fig = plt.figure()
25
+
26
+ # we only take the first two features. We could
27
+ # avoid this ugly slicing by using a two-dim dataset
28
+ X = iris.data[:, :2]
29
+ y = iris.target
30
+ colors = "bry"
31
+
32
+ # shuffle
33
+ idx = np.arange(X.shape[0])
34
+ np.random.seed(13)
35
+ np.random.shuffle(idx)
36
+ X = X[idx]
37
+ y = y[idx]
38
+
39
+ # standardize
40
+ if Standardize:
41
+ mean = X.mean(axis=0)
42
+ std = X.std(axis=0)
43
+ X = (X - mean) / std
44
+
45
+
46
+ clf = SGDClassifier(alpha=alpha, max_iter=max_iter).fit(X, y)
47
+ accuracy = clf.score(X,y)
48
+ acc = f'## The Accuracy on the entire dataset: {accuracy}'
49
+ ax = plt.gca()
50
+ DecisionBoundaryDisplay.from_estimator(
51
+ clf,
52
+ X,
53
+ cmap=matplotlib.cm.Paired,
54
+ ax=ax,
55
+ response_method="predict",
56
+ xlabel=iris.feature_names[0],
57
+ ylabel=iris.feature_names[1],
58
+ )
59
+ plt.axis("tight")
60
+
61
+ # Plot also the training points
62
+ for i, color in zip(clf.classes_, colors):
63
+ idx = np.where(y == i)
64
+ plt.scatter(
65
+ X[idx, 0],
66
+ X[idx, 1],
67
+ c=color,
68
+ label=iris.target_names[i],
69
+ cmap=matplotlib.cm.Paired,
70
+ edgecolor="black",
71
+ s=20,
72
+ )
73
+ plt.title("Decision surface of multi-class SGD")
74
+ plt.axis("tight")
75
+
76
+ # Plot the three one-against-all classifiers
77
+ xmin, xmax = plt.xlim()
78
+ ymin, ymax = plt.ylim()
79
+ coef = clf.coef_
80
+ intercept = clf.intercept_
81
+
82
+
83
+ def plot_hyperplane(c, color):
84
+ def line(x0):
85
+ return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]
86
+
87
+ plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color)
88
+
89
+
90
+ for i, color in zip(clf.classes_, colors):
91
+ plot_hyperplane(i, color)
92
+ plt.legend()
93
+
94
+ return fig,acc
95
+
96
+ title = "Plot multi-class SGD on the iris dataset"
97
+
98
+ model_card = f"""
99
+ ## Description
100
+ Plot decision surface of multi-class SGD on iris dataset.
101
+ The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines.
102
+ ## Dataset
103
+ Iris Dataset
104
+ """
105
+
106
+ with gr.Blocks(title=title) as demo:
107
+ gr.Markdown('''
108
+ <div>
109
+ <h1 style='text-align: center'>⚒ Plot multi-class SGD on iris dataset 🛠</h1>
110
+ </div>
111
+ ''')
112
+
113
+ gr.Markdown(model_card)
114
+ d0 = gr.Slider(0.001,5,step=0.001,value=0.001,label='alpha')
115
+ d1 = gr.Slider(1,1000,step=10,value=100,label='max_iter')
116
+ d2 = gr.Checkbox(value=True,label='Standardize')
117
+
118
+ btn =gr.Button(value='Submit')
119
+ btn.click(make_plot,inputs=[d0,d1,d2],outputs=[gr.Plot(),gr.Markdown()])
120
+
121
+ demo.launch()