|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from sklearn.linear_model import SGDClassifier |
|
from sklearn.datasets import make_blobs |
|
import gradio as gr |
|
|
|
def plot_max_margin_hyperplane(): |
|
|
|
X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60) |
|
|
|
clf = SGDClassifier(loss="hinge", alpha=0.01, max_iter=200) |
|
clf.fit(X, Y) |
|
|
|
xx = np.linspace(-1, 5, 10) |
|
yy = np.linspace(-1, 5, 10) |
|
|
|
X1, X2 = np.meshgrid(xx, yy) |
|
Z = np.empty(X1.shape) |
|
for (i, j), val in np.ndenumerate(X1): |
|
x1 = val |
|
x2 = X2[i, j] |
|
p = clf.decision_function([[x1, x2]]) |
|
Z[i, j] = p[0] |
|
levels = [-1.0, 0.0, 1.0] |
|
linestyles = ["dashed", "solid", "dashed"] |
|
colors = "k" |
|
fig = plt.figure() |
|
plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) |
|
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired, edgecolor="black", s=20) |
|
|
|
plt.axis("tight") |
|
|
|
return fig |
|
|
|
heading = 'π€π§‘π€π SGD: Maximum Margin Separating Hyperplane' |
|
|
|
with gr.Blocks(title = heading, theme = 'snehilsanyal/scikit-learn') as demo: |
|
gr.Markdown("# {}".format(heading)) |
|
gr.Markdown( |
|
""" |
|
### This demo visualizes the maximum margin hyperplane that seperates\ |
|
a two-class separable dataset using a linear SVM classifier trained using SGD. |
|
""" |
|
) |
|
gr.Markdown('Demo is based on [this script from scikit-learn documentation](https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_separating_hyperplane.html#sphx-glr-auto-examples-linear-model-plot-sgd-separating-hyperplane-py)') |
|
|
|
button = gr.Button(value = 'Visualize Maximum Margin Hyperplane') |
|
button.click(plot_max_margin_hyperplane, outputs = gr.Plot()) |
|
|
|
demo.launch() |