snehilsanyal
commited on
Commit
β’
a2f1844
1
Parent(s):
043ae0e
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from sklearn.linear_model import SGDClassifier
|
4 |
+
from sklearn.datasets import make_blobs
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
def plot_max_margin_hyperplane():
|
8 |
+
# we create 50 separable points
|
9 |
+
X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60)
|
10 |
+
# fit the model
|
11 |
+
clf = SGDClassifier(loss="hinge", alpha=0.01, max_iter=200)
|
12 |
+
clf.fit(X, Y)
|
13 |
+
# plot the line, the points, and the nearest vectors to the plane
|
14 |
+
xx = np.linspace(-1, 5, 10)
|
15 |
+
yy = np.linspace(-1, 5, 10)
|
16 |
+
|
17 |
+
X1, X2 = np.meshgrid(xx, yy)
|
18 |
+
Z = np.empty(X1.shape)
|
19 |
+
for (i, j), val in np.ndenumerate(X1):
|
20 |
+
x1 = val
|
21 |
+
x2 = X2[i, j]
|
22 |
+
p = clf.decision_function([[x1, x2]])
|
23 |
+
Z[i, j] = p[0]
|
24 |
+
levels = [-1.0, 0.0, 1.0]
|
25 |
+
linestyles = ["dashed", "solid", "dashed"]
|
26 |
+
colors = "k"
|
27 |
+
fig = plt.figure()
|
28 |
+
plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)
|
29 |
+
plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired, edgecolor="black", s=20)
|
30 |
+
|
31 |
+
plt.axis("tight")
|
32 |
+
#plt.show()
|
33 |
+
return fig
|
34 |
+
|
35 |
+
heading = 'π€π§‘π€π SGD: Maximum Margin Separating Hyperplane'
|
36 |
+
|
37 |
+
with gr.blocks(title = heading) as demo:
|
38 |
+
gr.Markdown("# {}".format(heading))
|
39 |
+
gr.Markdown(
|
40 |
+
"""
|
41 |
+
## This demo visualizes the maximum margin hyperplane that seperates\
|
42 |
+
a two-class separable dataset using a linear SVM classifier trained using SGD.
|
43 |
+
"""
|
44 |
+
)
|
45 |
+
gr.Markdown('Demo is based on [this script](https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_separating_hyperplane.html#sphx-glr-auto-examples-linear-model-plot-sgd-separating-hyperplane-py)')
|
46 |
+
|
47 |
+
button = gr.Button(value = 'Visualize SGD Maximum Margin Hyperplane')
|
48 |
+
button.click(plot_max_margin_hyperplane, outputs = gr.Plot())
|
49 |
+
|
50 |
+
demo.launch()
|