Spaces:
Sleeping
Sleeping
# Code source: Gaël Varoquaux | |
# License: BSD 3 clause | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn import svm | |
import gradio as gr | |
import matplotlib | |
matplotlib.use('Agg') | |
kernels = ["linear", "poly", "rbf"] | |
font1 = {'family':'Consolas','size':20} | |
cmaps = {'Set1': plt.cm.Set1, 'Set2': plt.cm.Set2, 'Set3': plt.cm.Set3, | |
'tab10': plt.cm.tab10, 'tab20': plt.cm.tab20} | |
# fit the model | |
def clf_kernel(kernel, cmap, dpi = 300, use_random = False): | |
#example data | |
if use_random == False: | |
X = np.c_[ | |
(0.4, -0.7), | |
(-1.5, -1), | |
(-1.4, -0.9), | |
(-1.3, -1.2), | |
(-1.5, 0.2), | |
(-1.2, -0.4), | |
(-0.5, 1.2), | |
(-1.5, 2.1), | |
(1, 1), | |
# -- | |
(1.3, 0.8), | |
(1.5, 0.5), | |
(0.2, -2), | |
(0.5, -2.4), | |
(0.2, -2.3), | |
(0, -2.7), | |
(1.3, 2.8), | |
].T | |
else: | |
#emulate some random data | |
x = np.random.uniform(-2, 2, size=(16, 1)) | |
y = np.random.uniform(-2, 2, size=(16, 1)) | |
X = np.hstack((x, y)) | |
Y = [0] * 8 + [1] * 8 | |
clf = svm.SVC(kernel=kernel, gamma=2) | |
clf.fit(X, Y) | |
# plot the line, the points, and the nearest vectors to the plane | |
fig= plt.figure(figsize=(10, 6), facecolor = 'none', | |
frameon = False, dpi = dpi) | |
ax = fig.add_subplot(111) | |
ax.scatter( | |
clf.support_vectors_[:, 0], | |
clf.support_vectors_[:, 1], | |
s=80, | |
facecolors="none", | |
zorder=10, | |
edgecolors="k", | |
) | |
ax.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=cmap, edgecolors="k") | |
ax.axis("tight") | |
x_min = -3 | |
x_max = 3 | |
y_min = -3 | |
y_max = 3 | |
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] | |
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) | |
# Put the result into a color plot | |
Z = Z.reshape(XX.shape) | |
ax.pcolormesh(XX, YY, Z > 0, cmap=cmap) | |
ax.contour( | |
XX, | |
YY, | |
Z, | |
colors=["k", "k", "k"], | |
linestyles=["--", "-", "--"], | |
levels=[-0.5, 0, 0.5], | |
) | |
ax.set_xlim(x_min, x_max) | |
ax.set_ylim(y_min, y_max) | |
ax.set_xticks(()) | |
ax.set_yticks(()) | |
ax.set_title('Type of kernel: ' + kernel, | |
color = "white", fontdict = font1, pad=20, | |
bbox=dict(boxstyle="round,pad=0.3", | |
color = "#6366F1")) | |
return fig | |
intro = """<h1 style="text-align: center;">Introducing <strong>SVM-Kernels</strong></h1> | |
""" | |
desc = """<h3 style="text-align: center;">🤗 Three different types of SVM-Kernels are displayed below. | |
The polynomial and RBF are especially useful when the data-points are not linearly separable. 🤗</h3> | |
""" | |
notice = """<div style = "text-align: left;"> <em>Notice: Run the model on example data or check | |
<strong>Randomize data</strong> to check out the model on emulated data-points.</em></div>""" | |
made ="""<div style="text-align: center;"> | |
<p>Made with ❤</p>""" | |
link = """<div style="text-align: center;"> | |
<a href="https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html#sphx-glr-auto-examples-svm-plot-svm-kernels-py" target="_blank" rel="noopener noreferrer"> | |
Demo is based on this script from scikit-learn documentation</a>""" | |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="indigo", | |
secondary_hue="violet", | |
neutral_hue="neutral", | |
font = gr.themes.GoogleFont("Inter")), | |
title="SVM-Kernels") as demo: | |
gr.HTML(intro) | |
gr.HTML(desc) | |
with gr.Box(): | |
with gr.Row(): | |
kernel = gr.Dropdown([i for i in kernels], label="Select kernel:", | |
show_label = True, value = 'linear') | |
with gr.Accordion(label = "More options", open = True): | |
cmap = gr.Radio(['Set1', 'Set2', 'Set3', 'tab10', 'tab20'], label="Choose color map: ", value = 'Set2') | |
dpi = gr.Slider(50, 150, value = 100, step = 1, label = "Set the resolution: ") | |
gr.HTML(notice) | |
random = gr.Checkbox(label="Randomize data", value = False) | |
btn = gr.Button('Make plot!').style(full_width=True) | |
plot = gr.Plot(label="Plot") | |
btn.click(fn=clf_kernel, inputs=[kernel,cmap,dpi,random], outputs=plot) | |
gr.HTML(made) | |
gr.HTML(link) | |
demo.launch() |