|
import gradio as gr |
|
import time |
|
import numpy as np |
|
from scipy.ndimage import gaussian_filter |
|
import matplotlib.pyplot as plt |
|
from skimage.data import coins |
|
from skimage.transform import rescale |
|
from sklearn.feature_extraction import image |
|
from sklearn.cluster import spectral_clustering |
|
import gradio as gr |
|
|
|
|
|
|
|
|
|
def getClusteringPlot(algorithm): |
|
|
|
orig_coins = coins() |
|
|
|
|
|
smoothened_coins = gaussian_filter(orig_coins, sigma=2) |
|
rescaled_coins = rescale(smoothened_coins, 0.2, mode="reflect", anti_aliasing=False) |
|
|
|
|
|
graph = image.img_to_graph(rescaled_coins) |
|
|
|
beta = 10 |
|
eps = 1e-6 |
|
graph.data = np.exp(-beta * graph.data / graph.data.std()) + eps |
|
|
|
|
|
n_regions = 26 |
|
|
|
|
|
|
|
n_regions_plus = 3 |
|
|
|
t0 = time.time() |
|
labels = spectral_clustering( |
|
graph, |
|
n_clusters=(n_regions + n_regions_plus), |
|
eigen_tol=1e-7, |
|
assign_labels=algorithm, |
|
random_state=42, |
|
) |
|
|
|
t1 = time.time() |
|
labels = labels.reshape(rescaled_coins.shape) |
|
plt.figure(figsize=(5, 5)) |
|
plt.imshow(rescaled_coins, cmap=plt.cm.gray) |
|
|
|
plt.xticks(()) |
|
plt.yticks(()) |
|
title = "Spectral clustering: %s, %.2fs" % (algorithm, (t1 - t0)) |
|
plt.title(title) |
|
for l in range(n_regions): |
|
colors = [plt.cm.nipy_spectral((l + 4) / float(n_regions + 4))] |
|
plt.contour(labels == l, colors=colors) |
|
|
|
return (plt, "%.3fs" % (t1 - t0)) |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("## Segmenting the picture of Greek coins in regions 🪙") |
|
gr.Markdown("This demo is based on this [scikit-learn example](https://scikit-learn.org/stable/auto_examples/cluster/plot_coin_segmentation.html#sphx-glr-auto-examples-cluster-plot-coin-segmentation-py).") |
|
gr.Markdown("In this demo, we compare three strategies for performing segmentation-clustering and breaking the below image of Greek coins into multiple partly-homogeneous regions.") |
|
|
|
inp = gr.Radio(["kmeans", "discretize", "cluster_qr"], label="Solver", info="Choose a clustering algorithm", value="kmeans") |
|
with gr.Row(): |
|
plot = gr.Plot(label="Plot") |
|
num = gr.Textbox(label="Running Time") |
|
inp.change(getClusteringPlot, inputs=[inp], outputs=[plot, num]) |
|
demo.load(getClusteringPlot, inputs=[inp], outputs=[plot, num]) |
|
|
|
gr.HTML("<hr>") |
|
gr.Image(coins(), label="An image of 24 Greek coins") |
|
gr.Markdown("The image is retrieved from scikit-image's data [gallery](https://scikit-image.org/docs/stable/auto_examples/).") |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |