import gradio as gr import time import numpy as np from scipy.ndimage import gaussian_filter import matplotlib.pyplot as plt from skimage.data import coins from skimage.transform import rescale from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering import gradio as gr # function for making the clustering plot. # input: one of the following algorithms: "kmeans", "discretize", "cluster_qr" def getClusteringPlot(algorithm): # load the coins as a numpy array orig_coins = coins() # Pre-processing the image smoothened_coins = gaussian_filter(orig_coins, sigma=2) rescaled_coins = rescale(smoothened_coins, 0.2, mode="reflect", anti_aliasing=False) # Convert the image into a graph graph = image.img_to_graph(rescaled_coins) beta = 10 eps = 1e-6 graph.data = np.exp(-beta * graph.data / graph.data.std()) + eps # The number of segmented regions to display needs to be chosen manually n_regions = 26 # The spectral clustering quality may also benetif from requesting # extra regions for segmentation. n_regions_plus = 3 t0 = time.time() labels = spectral_clustering( graph, n_clusters=(n_regions + n_regions_plus), eigen_tol=1e-7, assign_labels=algorithm, random_state=42, ) t1 = time.time() labels = labels.reshape(rescaled_coins.shape) plt.figure(figsize=(5, 5)) plt.imshow(rescaled_coins, cmap=plt.cm.gray) plt.xticks(()) plt.yticks(()) title = "Spectral clustering: %s, %.2fs" % (algorithm, (t1 - t0)) plt.title(title) for l in range(n_regions): colors = [plt.cm.nipy_spectral((l + 4) / float(n_regions + 4))] plt.contour(labels == l, colors=colors) # To view individual segments as appear comment in plt.pause(0.5) return (plt, "%.3fs" % (t1 - t0)) # building the gradio interface with gr.Blocks() as demo: gr.Markdown("## Segmenting the picture of Greek coins in regions 🪙") gr.Markdown("This demo is based on this [scikit-learn example](https://scikit-learn.org/stable/auto_examples/cluster/plot_coin_segmentation.html#sphx-glr-auto-examples-cluster-plot-coin-segmentation-py).") gr.Markdown("In this demo, we compare three strategies for performing segmentation-clustering and breaking the below image of Greek coins into multiple partly-homogeneous regions.") inp = gr.Radio(["kmeans", "discretize", "cluster_qr"], label="Solver", info="Choose a clustering algorithm", value="kmeans") with gr.Row(): plot = gr.Plot(label="Plot") num = gr.Textbox(label="Running Time") inp.change(getClusteringPlot, inputs=[inp], outputs=[plot, num]) demo.load(getClusteringPlot, inputs=[inp], outputs=[plot, num]) gr.HTML("
") gr.Image(coins(), label="An image of 24 Greek coins") gr.Markdown("The image is retrieved from scikit-image's data [gallery](https://scikit-image.org/docs/stable/auto_examples/).") if __name__ == "__main__": demo.launch()