haizad commited on
Commit
e599435
·
1 Parent(s): d631364

Update descriptions and add default value

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -110,11 +110,15 @@ def stacked_model(model1,model2,model3):
110
  title = "Combine predictors using stacking"
111
  with gr.Blocks(title=title) as demo:
112
  gr.Markdown(f"## {title}")
113
- gr.Markdown("This app demonstrates combining 3 predictors trained on Ames housing dataset from OpenML using stacking. This app is developed based on [scikit-learn example](https://scikit-learn.org/stable/auto_examples/ensemble/plot_stack_predictors.html#sphx-glr-auto-examples-ensemble-plot-stack-predictors-py)")
114
-
115
- model1 = gr.Textbox(label="Repo id of first model")
116
- model2 = gr.Textbox(label="Repo id of second model")
117
- model3 = gr.Textbox(label="Repo id of third model")
 
 
 
 
118
  plot = gr.Plot()
119
  stack_btn = gr.Button("Stack")
120
  stack_btn.click(fn=stacked_model, inputs=[model1,model2,model3], outputs=[plot])
 
110
  title = "Combine predictors using stacking"
111
  with gr.Blocks(title=title) as demo:
112
  gr.Markdown(f"## {title}")
113
+ gr.Markdown("""
114
+ This app demonstrates combining 3 predictors trained on Ames housing dataset from OpenML using stacking and Ridge estimator as final estimator.
115
+ Stacking uses a meta-learning algorithm to learn how to best combine the predictions from trained models. The OpenML Ames housing dataset is a processed version of the 'Ames Iowa Housing'with 81 features.
116
+ This app is developed based on [scikit-learn example](https://scikit-learn.org/stable/auto_examples/ensemble/plot_stack_predictors.html#sphx-glr-auto-examples-ensemble-plot-stack-predictors-py)
117
+ """)
118
+
119
+ model1 = gr.Textbox(label="Repo id of first model", value="https://huggingface.co/haizad/ames-housing-random-forest-predictor")
120
+ model2 = gr.Textbox(label="Repo id of second model", value="https://huggingface.co/haizad/ames-housing-gbdt-predictor")
121
+ model3 = gr.Textbox(label="Repo id of third model", value="https://huggingface.co/haizad/ames-housing-lasso-predictor")
122
  plot = gr.Plot()
123
  stack_btn = gr.Button("Stack")
124
  stack_btn.click(fn=stacked_model, inputs=[model1,model2,model3], outputs=[plot])