Update app.py
Browse files
app.py
CHANGED
@@ -42,37 +42,35 @@ def create_plot(x1, y1, x2, y2, cov1, cov2, n1, n2, max_depth, n_estimators):
|
|
42 |
|
43 |
clf.fit(X, y)
|
44 |
|
45 |
-
fig = plt.figure(figsize=(
|
46 |
-
ax = fig.add_subplot(
|
47 |
|
48 |
xx, yy, Z = get_decision_surface(X, y, clf)
|
49 |
-
ax.contourf(xx, yy, Z, cmap=CMAP, alpha=0.
|
50 |
|
51 |
X1, y1 = X[y==0], y[y==0]
|
52 |
X2, y2 = X[y==1], y[y==1]
|
53 |
|
54 |
-
ax.scatter(X1[:, 0], X1[:, 1], c=C1, edgecolor='k', s=
|
55 |
-
ax.scatter(X2[:, 0], X2[:, 1], c=C2, edgecolor='k', s=
|
56 |
|
57 |
-
ax.set_xlabel('x'); ax.set_ylabel('y')
|
58 |
ax.legend()
|
59 |
ax.set_title(f'AdaBoostClassifier Decision Surface')
|
60 |
|
61 |
scores = clf.decision_function(X)
|
62 |
|
63 |
-
ax = fig.add_subplot(
|
64 |
ax.hist(scores[y==0], bins=100, range=(scores.min(), scores.max()), facecolor=C1, label="Class A", alpha=0.5, edgecolor="k")
|
65 |
ax.hist(scores[y==1], bins=100, range=(scores.min(), scores.max()), facecolor=C2, label="Class B", alpha=0.5, edgecolor="k")
|
66 |
|
67 |
ax.set_xlabel('Score'); ax.set_ylabel('Frequency')
|
68 |
ax.legend()
|
69 |
ax.set_title('Decision Scores')
|
|
|
70 |
|
71 |
return fig
|
72 |
|
73 |
info = '''
|
74 |
-
# AdaBoost Classifier Example on Gaussian Quantile Generated Data.
|
75 |
-
|
76 |
This example fits an [AdaBoost classifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier) on two non-linearly separable classes. The samples are generated using two [Gaussian quantiles](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_gaussian_quantiles.html#sklearn.datasets.make_gaussian_quantiles) of configurable mean and covariance (see the sliders below).
|
77 |
|
78 |
For the first generated Gaussian, the inner half quantile is assigned to Class A and the outer half quantile is assigned to class B. For the second generated quantile, the opposite assignment happens (inner = Class B, outer = Class A).
|
@@ -84,43 +82,44 @@ Use the controls below to change the Gaussian distribution parameters, number of
|
|
84 |
Created by [@huabdul](https://huggingface.co/huabdul) based on [Scikit-learn docs](https://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.html).
|
85 |
'''
|
86 |
with gr.Blocks(analytics_enabled=False) as demo:
|
87 |
-
gr.Markdown(info)
|
88 |
-
|
89 |
-
with gr.Row():
|
90 |
-
with gr.Column():
|
91 |
-
s_x1 = gr.Slider(-10, 10, value=0, step=0.1, label='Mean x1')
|
92 |
-
with gr.Column():
|
93 |
-
s_y1 = gr.Slider(-10, 10, value=0, step=0.1, label='Mean y1')
|
94 |
-
with gr.Row():
|
95 |
-
with gr.Column():
|
96 |
-
s_x2 = gr.Slider(-10, 10, value=2, step=0.1, label='Mean x2')
|
97 |
-
with gr.Column():
|
98 |
-
s_y2 = gr.Slider(-10, 10, value=2, step=0.1, label='Mean y2')
|
99 |
-
|
100 |
-
with gr.Row():
|
101 |
-
with gr.Column():
|
102 |
-
s_cov1 = gr.Slider(0.01, 5, value=1, step=0.01, label='Covariance 1')
|
103 |
-
with gr.Column():
|
104 |
-
s_cov2 = gr.Slider(0.01, 5, value=2, step=0.01, label='Covariance 2')
|
105 |
-
|
106 |
with gr.Row():
|
107 |
-
with gr.Column():
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
btn.click(create_plot, inputs=[s_x1, s_y1, s_x2, s_y2, s_cov1, s_cov2, s_n_samples1, s_n_samples2, s_max_depth, s_n_estimators], outputs=[plot])
|
123 |
demo.load(create_plot, inputs=[s_x1, s_y1, s_x2, s_y2, s_cov1, s_cov2, s_n_samples1, s_n_samples2, s_max_depth, s_n_estimators], outputs=[plot])
|
124 |
|
125 |
demo.launch()
|
126 |
-
#=======================================================
|
|
|
42 |
|
43 |
clf.fit(X, y)
|
44 |
|
45 |
+
fig = plt.figure(figsize=(4.5, 6.9))
|
46 |
+
ax = fig.add_subplot(211)
|
47 |
|
48 |
xx, yy, Z = get_decision_surface(X, y, clf)
|
49 |
+
ax.contourf(xx, yy, Z, cmap=CMAP, alpha=0.4)
|
50 |
|
51 |
X1, y1 = X[y==0], y[y==0]
|
52 |
X2, y2 = X[y==1], y[y==1]
|
53 |
|
54 |
+
ax.scatter(X1[:, 0], X1[:, 1], c=C1, edgecolor='k', s=20, label='Class A')
|
55 |
+
ax.scatter(X2[:, 0], X2[:, 1], c=C2, edgecolor='k', s=20, label='Class B')
|
56 |
|
|
|
57 |
ax.legend()
|
58 |
ax.set_title(f'AdaBoostClassifier Decision Surface')
|
59 |
|
60 |
scores = clf.decision_function(X)
|
61 |
|
62 |
+
ax = fig.add_subplot(212)
|
63 |
ax.hist(scores[y==0], bins=100, range=(scores.min(), scores.max()), facecolor=C1, label="Class A", alpha=0.5, edgecolor="k")
|
64 |
ax.hist(scores[y==1], bins=100, range=(scores.min(), scores.max()), facecolor=C2, label="Class B", alpha=0.5, edgecolor="k")
|
65 |
|
66 |
ax.set_xlabel('Score'); ax.set_ylabel('Frequency')
|
67 |
ax.legend()
|
68 |
ax.set_title('Decision Scores')
|
69 |
+
fig.set_tight_layout(True)
|
70 |
|
71 |
return fig
|
72 |
|
73 |
info = '''
|
|
|
|
|
74 |
This example fits an [AdaBoost classifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier) on two non-linearly separable classes. The samples are generated using two [Gaussian quantiles](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_gaussian_quantiles.html#sklearn.datasets.make_gaussian_quantiles) of configurable mean and covariance (see the sliders below).
|
75 |
|
76 |
For the first generated Gaussian, the inner half quantile is assigned to Class A and the outer half quantile is assigned to class B. For the second generated quantile, the opposite assignment happens (inner = Class B, outer = Class A).
|
|
|
82 |
Created by [@huabdul](https://huggingface.co/huabdul) based on [Scikit-learn docs](https://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.html).
|
83 |
'''
|
84 |
with gr.Blocks(analytics_enabled=False) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
with gr.Row():
|
86 |
+
with gr.Column(scale=2):
|
87 |
+
gr.Markdown(info)
|
88 |
+
with gr.Row():
|
89 |
+
with gr.Column(min_width=100):
|
90 |
+
s_x1 = gr.Slider(-10, 10, value=0, step=0.1, label='Mean x1')
|
91 |
+
with gr.Column(min_width=100):
|
92 |
+
s_y1 = gr.Slider(-10, 10, value=0, step=0.1, label='Mean y1')
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column(min_width=100):
|
95 |
+
s_x2 = gr.Slider(-10, 10, value=2, step=0.1, label='Mean x2')
|
96 |
+
with gr.Column(min_width=100):
|
97 |
+
s_y2 = gr.Slider(-10, 10, value=2, step=0.1, label='Mean y2')
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
with gr.Column(min_width=100):
|
101 |
+
s_cov1 = gr.Slider(0.01, 5, value=1, step=0.01, label='Covariance 1')
|
102 |
+
with gr.Column(min_width=100):
|
103 |
+
s_cov2 = gr.Slider(0.01, 5, value=2, step=0.01, label='Covariance 2')
|
104 |
+
|
105 |
+
with gr.Row():
|
106 |
+
with gr.Column(min_width=100):
|
107 |
+
s_n_samples1 = gr.Slider(1, 1000, value=200, step=1, label='n_samples 1')
|
108 |
+
with gr.Column(min_width=100):
|
109 |
+
s_n_samples2 = gr.Slider(1, 1000, value=300, step=1, label='n_samples 2')
|
110 |
+
|
111 |
+
with gr.Row():
|
112 |
+
with gr.Column(min_width=100):
|
113 |
+
s_max_depth = gr.Slider(1, 50, value=1, step=1, label='AdaBoostClassifier max_depth')
|
114 |
+
with gr.Column(min_width=100):
|
115 |
+
s_n_estimators = gr.Slider(1, 500, value=300, step=1, label='AdaBoostClassifier n_estimators')
|
116 |
+
|
117 |
+
btn = gr.Button('Submit')
|
118 |
+
with gr.Column(scale=1.5):
|
119 |
+
plot = gr.Plot(show_label=False)
|
120 |
|
121 |
btn.click(create_plot, inputs=[s_x1, s_y1, s_x2, s_y2, s_cov1, s_cov2, s_n_samples1, s_n_samples2, s_max_depth, s_n_estimators], outputs=[plot])
|
122 |
demo.load(create_plot, inputs=[s_x1, s_y1, s_x2, s_y2, s_cov1, s_cov2, s_n_samples1, s_n_samples2, s_max_depth, s_n_estimators], outputs=[plot])
|
123 |
|
124 |
demo.launch()
|
125 |
+
#=======================================================
|