|
import gradio as gr |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from sklearn.ensemble import RandomForestClassifier, VotingClassifier |
|
from sklearn.linear_model import LogisticRegression |
|
from sklearn.naive_bayes import GaussianNB |
|
|
|
|
|
def choose_model(model): |
|
if model == "Logistic Regression": |
|
return LogisticRegression(max_iter=1000, random_state=123) |
|
elif model == "Random Forest": |
|
return RandomForestClassifier(n_estimators=100, random_state=123) |
|
elif model == "Gaussian Naive Bayes": |
|
return GaussianNB() |
|
else: |
|
raise ValueError("Model is not supported.") |
|
|
|
|
|
def get_proba_plots( |
|
model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight |
|
): |
|
clf1 = choose_model(model_1) |
|
clf2 = choose_model(model_2) |
|
clf3 = choose_model(model_3) |
|
X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) |
|
y = np.array([1, 1, 2, 2]) |
|
|
|
eclf = VotingClassifier( |
|
estimators=[("clf1", clf1), ("clf2", clf2), ("clf3", clf3)], |
|
voting="soft", |
|
weights=[model_1_weight, model_2_weight, model_3_weight], |
|
) |
|
|
|
|
|
probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)] |
|
|
|
|
|
class1_1 = [pr[0, 0] for pr in probas] |
|
class2_1 = [pr[0, 1] for pr in probas] |
|
|
|
|
|
|
|
N = 4 |
|
ind = np.arange(N) |
|
width = 0.35 |
|
|
|
fig, ax = plt.subplots() |
|
|
|
|
|
p1 = ax.bar( |
|
ind, np.hstack(([class1_1[:-1], [0]])), width, color="green", edgecolor="k" |
|
) |
|
p2 = ax.bar( |
|
ind + width, |
|
np.hstack(([class2_1[:-1], [0]])), |
|
width, |
|
color="lightgreen", |
|
edgecolor="k", |
|
) |
|
|
|
|
|
ax.bar(ind, [0, 0, 0, class1_1[-1]], width, color="blue", edgecolor="k") |
|
ax.bar( |
|
ind + width, [0, 0, 0, class2_1[-1]], width, color="steelblue", edgecolor="k" |
|
) |
|
|
|
|
|
plt.axvline(2.8, color="k", linestyle="dashed") |
|
ax.set_xticks(ind + width) |
|
ax.set_xticklabels( |
|
[ |
|
f"{model_1}\nweight {model_1_weight}", |
|
f"{model_2}\nweight {model_2_weight}", |
|
f"{model_3}\nweight {model_3_weight}", |
|
"VotingClassifier\n(average probabilities)", |
|
], |
|
rotation=40, |
|
ha="right", |
|
) |
|
plt.ylim([0, 1]) |
|
plt.title("Class probabilities for sample 1 by different classifiers") |
|
plt.legend([p1[0], p2[0]], ["class 1", "class 2"], loc="upper left") |
|
plt.tight_layout() |
|
plt.show() |
|
return fig |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
""" |
|
# Class probabilities by the `VotingClassifier` |
|
|
|
This space shows the effect of the weight of different classifiers when using sklearn's [VotingClassifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.VotingClassifier). |
|
|
|
For example, suppose you set the weights as in the table below, and the models have the following predicted probabilities: |
|
|
|
| | Weights | Predicted Probabilities | |
|
|---------|:-------:|:----------------:| |
|
| Model 1 | 1 | 0.5 | |
|
| Model 2 | 2 | 0.8 | |
|
| Model 3 | 5 | 0.9 | |
|
|
|
The predicted probability by the `VotingClassifier` will be $(1*0.5 + 2*0.8 + 5*0.9) / (1 + 2 + 5)$ |
|
|
|
You can experiment with different model types and weights and see their effect on the VotingClassifier's prediction. |
|
|
|
This space is based on [sklearn’s original demo](https://scikit-learn.org/stable/auto_examples/ensemble/plot_voting_probas.html#sphx-glr-auto-examples-ensemble-plot-voting-probas-py). |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
with gr.Row(): |
|
model_1 = gr.Dropdown( |
|
[ |
|
"Logistic Regression", |
|
"Random Forest", |
|
"Gaussian Naive Bayes", |
|
], |
|
label="Model 1", |
|
value="Logistic Regression", |
|
) |
|
model_1_weight = gr.Slider( |
|
value=1, label="Model 1 Weight", minimum=0, maximum=10, step=1 |
|
) |
|
with gr.Row(): |
|
model_2 = gr.Dropdown( |
|
[ |
|
"Logistic Regression", |
|
"Random Forest", |
|
"Gaussian Naive Bayes", |
|
], |
|
label="Model 2", |
|
value="Random Forest", |
|
) |
|
model_2_weight = gr.Slider( |
|
value=1, label="Model 2 Weight", minimum=0, maximum=10, step=1 |
|
) |
|
with gr.Row(): |
|
model_3 = gr.Dropdown( |
|
[ |
|
"Logistic Regression", |
|
"Random Forest", |
|
"Gaussian Naive Bayes", |
|
], |
|
label="Model 3", |
|
value="Gaussian Naive Bayes", |
|
) |
|
|
|
model_3_weight = gr.Slider( |
|
value=5, label="Model 3 Weight", minimum=0, maximum=10, step=1 |
|
) |
|
with gr.Column(scale=4): |
|
proba_plots = gr.Plot() |
|
|
|
model_1.change( |
|
get_proba_plots, |
|
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight], |
|
proba_plots, |
|
queue=False, |
|
) |
|
model_2.change( |
|
get_proba_plots, |
|
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight], |
|
proba_plots, |
|
queue=False, |
|
) |
|
model_3.change( |
|
get_proba_plots, |
|
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight], |
|
proba_plots, |
|
queue=False, |
|
) |
|
model_1_weight.change( |
|
get_proba_plots, |
|
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight], |
|
proba_plots, |
|
queue=False, |
|
) |
|
model_2_weight.change( |
|
get_proba_plots, |
|
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight], |
|
proba_plots, |
|
queue=False, |
|
) |
|
model_3_weight.change( |
|
get_proba_plots, |
|
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight], |
|
proba_plots, |
|
queue=False, |
|
) |
|
|
|
demo.load( |
|
get_proba_plots, |
|
[model_1, model_2, model_3, model_1_weight, model_2_weight, model_3_weight], |
|
proba_plots, |
|
queue=False, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|