Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
from azure.ai.formrecognizer import DocumentAnalysisClient
|
5 |
+
from azure.core.credentials import AzureKeyCredential
|
6 |
+
from PyPDF2 import PdfReader, PdfWriter
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
YOUR_ENDPOINT = os.environ["YOUR_ENDPOINT"]
|
10 |
+
YOUR_KEY = os.environ["YOUR_KEY"]
|
11 |
+
|
12 |
+
st.set_page_config(
|
13 |
+
page_title="PDF Table Extractor",
|
14 |
+
layout="centered",
|
15 |
+
initial_sidebar_state="auto"
|
16 |
+
)
|
17 |
+
|
18 |
+
document_analysis_client = DocumentAnalysisClient(
|
19 |
+
endpoint=YOUR_ENDPOINT,
|
20 |
+
credential=AzureKeyCredential(YOUR_KEY)
|
21 |
+
)
|
22 |
+
|
23 |
+
# Function to convert table cells to pandas DataFrame
|
24 |
+
|
25 |
+
|
26 |
+
def table2pandas(table):
|
27 |
+
data = []
|
28 |
+
for cell in table.cells:
|
29 |
+
while len(data) <= cell.row_index:
|
30 |
+
data.append([])
|
31 |
+
while len(data[cell.row_index]) <= cell.column_index:
|
32 |
+
data[cell.row_index].append("")
|
33 |
+
data[cell.row_index][cell.column_index] = cell.content
|
34 |
+
return pd.DataFrame(data)
|
35 |
+
|
36 |
+
# Function to split PDF into pages
|
37 |
+
|
38 |
+
|
39 |
+
def split_pdf_to_pages(filepath):
|
40 |
+
input_pdf = PdfReader(filepath)
|
41 |
+
pages = []
|
42 |
+
for page_num in range(len(input_pdf.pages)):
|
43 |
+
output_pdf = PdfWriter()
|
44 |
+
output_pdf.add_page(input_pdf.pages[page_num])
|
45 |
+
page_stream = BytesIO()
|
46 |
+
output_pdf.write(page_stream)
|
47 |
+
page_stream.seek(0)
|
48 |
+
pages.append(page_stream.read())
|
49 |
+
return pages
|
50 |
+
|
51 |
+
# Streamlit app
|
52 |
+
|
53 |
+
|
54 |
+
def main():
|
55 |
+
st.title("PDF Table Extractor")
|
56 |
+
|
57 |
+
# Upload PDF file
|
58 |
+
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
|
59 |
+
|
60 |
+
if uploaded_file is not None:
|
61 |
+
# Temporarily save uploaded PDF
|
62 |
+
os.makedirs("temp_files", exist_ok=True)
|
63 |
+
temp_filepath = os.path.join("temp_files", uploaded_file.name)
|
64 |
+
with open(temp_filepath, "wb") as f:
|
65 |
+
f.write(uploaded_file.getbuffer())
|
66 |
+
|
67 |
+
st.text("Uploaded successfully. Extracting tables...")
|
68 |
+
|
69 |
+
# Process the uploaded PDF
|
70 |
+
pages = split_pdf_to_pages(temp_filepath)
|
71 |
+
for page_num, page_bytes in enumerate(pages):
|
72 |
+
poller = document_analysis_client.begin_analyze_document(
|
73 |
+
"prebuilt-layout", document=page_bytes)
|
74 |
+
result = poller.result()
|
75 |
+
|
76 |
+
if hasattr(result, 'tables') and result.tables:
|
77 |
+
for table_num, table in enumerate(result.tables):
|
78 |
+
table_df = table2pandas(table)
|
79 |
+
st.write(table_df) # Display table in Streamlit (optional)
|
80 |
+
|
81 |
+
# Provide a download link for the CSV file
|
82 |
+
csv_file = table_df.to_csv(index=False).encode('utf-8')
|
83 |
+
st.download_button(
|
84 |
+
label="Download CSV",
|
85 |
+
data=csv_file,
|
86 |
+
file_name=f"{os.path.basename(uploaded_file.name).replace('.pdf', '')}_page{page_num + 1}_table{table_num}.csv",
|
87 |
+
mime="text/csv"
|
88 |
+
)
|
89 |
+
|
90 |
+
st.success("Tables extracted and saved successfully!")
|
91 |
+
|
92 |
+
|
93 |
+
if __name__ == "__main__":
|
94 |
+
main()
|