Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import random | |
import argparse | |
import glob | |
import json | |
import os | |
import time | |
from concurrent.futures import ThreadPoolExecutor | |
import gradio as gr | |
import numpy as np | |
import onnxruntime as rt | |
import tqdm | |
from huggingface_hub import hf_hub_download | |
import MIDI | |
from midi_synthesizer import MidiSynthesizer | |
from midi_tokenizer import MIDITokenizer | |
MAX_SEED = np.iinfo(np.int32).max | |
in_space = os.getenv("SYSTEM") == "spaces" | |
def softmax(x, axis): | |
x_max = np.amax(x, axis=axis, keepdims=True) | |
exp_x_shifted = np.exp(x - x_max) | |
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True) | |
def sample_top_p_k(probs, p, k, generator=None): | |
if generator is None: | |
generator = np.random | |
probs_idx = np.argsort(-probs, axis=-1) | |
probs_sort = np.take_along_axis(probs, probs_idx, -1) | |
probs_sum = np.cumsum(probs_sort, axis=-1) | |
mask = probs_sum - probs_sort > p | |
probs_sort[mask] = 0.0 | |
mask = np.zeros(probs_sort.shape[-1]) | |
mask[:k] = 1 | |
probs_sort = probs_sort * mask | |
probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True) | |
shape = probs_sort.shape | |
probs_sort_flat = probs_sort.reshape(-1, shape[-1]) | |
probs_idx_flat = probs_idx.reshape(-1, shape[-1]) | |
next_token = np.stack([generator.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)]) | |
next_token = next_token.reshape(*shape[:-1]) | |
return next_token | |
def apply_io_binding(model: rt.InferenceSession, inputs, outputs, batch_size, past_len, cur_len): | |
io_binding = model.io_binding() | |
for input_ in model.get_inputs(): | |
name = input_.name | |
if name.startswith("past_key_values"): | |
present_name = name.replace("past_key_values", "present") | |
if present_name in outputs: | |
v = outputs[present_name] | |
else: | |
v = rt.OrtValue.ortvalue_from_shape_and_type( | |
(batch_size, input_.shape[1], past_len, input_.shape[3]), | |
element_type=np.float32, | |
device_type=device) | |
inputs[name] = v | |
else: | |
v = inputs[name] | |
io_binding.bind_ortvalue_input(name, v) | |
for output in model.get_outputs(): | |
name = output.name | |
if name.startswith("present"): | |
v = rt.OrtValue.ortvalue_from_shape_and_type( | |
(batch_size, output.shape[1], cur_len, output.shape[3]), | |
element_type=np.float32, | |
device_type=device) | |
outputs[name] = v | |
else: | |
v = outputs[name] | |
io_binding.bind_ortvalue_output(name, v) | |
return io_binding | |
def generate(model, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20, | |
disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None): | |
tokenizer = model[2] | |
if disable_channels is not None: | |
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels] | |
else: | |
disable_channels = [] | |
if generator is None: | |
generator = np.random | |
max_token_seq = tokenizer.max_token_seq | |
if prompt is None: | |
input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64) | |
input_tensor[0, 0] = tokenizer.bos_id # bos | |
input_tensor = input_tensor[None, :, :] | |
input_tensor = np.repeat(input_tensor, repeats=batch_size, axis=0) | |
else: | |
if len(prompt.shape) == 2: | |
prompt = prompt[None, :] | |
prompt = np.repeat(prompt, repeats=batch_size, axis=0) | |
elif prompt.shape[0] == 1: | |
prompt = np.repeat(prompt, repeats=batch_size, axis=0) | |
elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size: | |
raise ValueError(f"invalid shape for prompt, {prompt.shape}") | |
prompt = prompt[..., :max_token_seq] | |
if prompt.shape[-1] < max_token_seq: | |
prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])), | |
mode="constant", constant_values=tokenizer.pad_id) | |
input_tensor = prompt | |
cur_len = input_tensor.shape[1] | |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len) | |
model0_inputs = {} | |
model0_outputs = {} | |
emb_size = 1024 | |
for output in model[0].get_outputs(): | |
if output.name == "hidden": | |
emb_size = output.shape[2] | |
past_len = 0 | |
with bar: | |
while cur_len < max_len: | |
end = [False] * batch_size | |
model0_inputs["x"] = rt.OrtValue.ortvalue_from_numpy(input_tensor[:, past_len:], device_type=device) | |
model0_outputs["hidden"] = rt.OrtValue.ortvalue_from_shape_and_type( | |
(batch_size, cur_len - past_len, emb_size), | |
element_type=np.float32, | |
device_type=device) | |
io_binding = apply_io_binding(model[0], model0_inputs, model0_outputs, batch_size, past_len, cur_len) | |
io_binding.synchronize_inputs() | |
model[0].run_with_iobinding(io_binding) | |
io_binding.synchronize_outputs() | |
hidden = model0_outputs["hidden"].numpy()[:, -1:] | |
next_token_seq = np.zeros((batch_size, 0), dtype=np.int64) | |
event_names = [""] * batch_size | |
model1_inputs = {"hidden": rt.OrtValue.ortvalue_from_numpy(hidden, device_type=device)} | |
model1_outputs = {} | |
for i in range(max_token_seq): | |
mask = np.zeros((batch_size, tokenizer.vocab_size), dtype=np.int64) | |
for b in range(batch_size): | |
if end[b]: | |
mask[b, tokenizer.pad_id] = 1 | |
continue | |
if i == 0: | |
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id] | |
if disable_patch_change: | |
mask_ids.remove(tokenizer.event_ids["patch_change"]) | |
if disable_control_change: | |
mask_ids.remove(tokenizer.event_ids["control_change"]) | |
mask[b, mask_ids] = 1 | |
else: | |
param_names = tokenizer.events[event_names[b]] | |
if i > len(param_names): | |
mask[b, tokenizer.pad_id] = 1 | |
continue | |
param_name = param_names[i - 1] | |
mask_ids = tokenizer.parameter_ids[param_name] | |
if param_name == "channel": | |
mask_ids = [i for i in mask_ids if i not in disable_channels] | |
mask[b, mask_ids] = 1 | |
mask = mask[:, None, :] | |
x = next_token_seq | |
if i != 0: | |
# cached | |
if i == 1: | |
hidden = np.zeros((batch_size, 0, emb_size), dtype=np.float32) | |
model1_inputs["hidden"] = rt.OrtValue.ortvalue_from_numpy(hidden, device_type=device) | |
x = x[:, -1:] | |
model1_inputs["x"] = rt.OrtValue.ortvalue_from_numpy(x, device_type=device) | |
model1_outputs["y"] = rt.OrtValue.ortvalue_from_shape_and_type( | |
(batch_size, 1, tokenizer.vocab_size), | |
element_type=np.float32, | |
device_type=device | |
) | |
io_binding = apply_io_binding(model[1], model1_inputs, model1_outputs, batch_size, i, i+1) | |
io_binding.synchronize_inputs() | |
model[1].run_with_iobinding(io_binding) | |
io_binding.synchronize_outputs() | |
logits = model1_outputs["y"].numpy() | |
scores = softmax(logits / temp, -1) * mask | |
samples = sample_top_p_k(scores, top_p, top_k, generator) | |
if i == 0: | |
next_token_seq = samples | |
for b in range(batch_size): | |
if end[b]: | |
continue | |
eid = samples[b].item() | |
if eid == tokenizer.eos_id: | |
end[b] = True | |
else: | |
event_names[b] = tokenizer.id_events[eid] | |
else: | |
next_token_seq = np.concatenate([next_token_seq, samples], axis=1) | |
if all([len(tokenizer.events[event_names[b]]) == i for b in range(batch_size) if not end[b]]): | |
break | |
if next_token_seq.shape[1] < max_token_seq: | |
next_token_seq = np.pad(next_token_seq, | |
((0, 0), (0, max_token_seq - next_token_seq.shape[-1])), | |
mode="constant", constant_values=tokenizer.pad_id) | |
next_token_seq = next_token_seq[:, None, :] | |
input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1) | |
past_len = cur_len | |
cur_len += 1 | |
bar.update(1) | |
yield next_token_seq[:, 0] | |
if all(end): | |
break | |
def create_msg(name, data): | |
return {"name": name, "data": data} | |
def send_msgs(msgs): | |
return json.dumps(msgs) | |
def get_duration(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm, | |
time_sig, key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr, | |
remove_empty_channels, seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc): | |
t = gen_events // 30 | |
if "large" in model_name: | |
t = gen_events // 23 | |
return t + 5 | |
def run(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm, time_sig, | |
key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr, remove_empty_channels, | |
seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc): | |
model = models[model_name] | |
model_base = rt.InferenceSession(model[0], providers=providers) | |
model_token = rt.InferenceSession(model[1], providers=providers) | |
tokenizer = model[2] | |
model = [model_base, model_token, tokenizer] | |
bpm = int(bpm) | |
if time_sig == "auto": | |
time_sig = None | |
time_sig_nn = 4 | |
time_sig_dd = 2 | |
else: | |
time_sig_nn, time_sig_dd = time_sig.split('/') | |
time_sig_nn = int(time_sig_nn) | |
time_sig_dd = {2: 1, 4: 2, 8: 3}[int(time_sig_dd)] | |
if key_sig == 0: | |
key_sig = None | |
key_sig_sf = 0 | |
key_sig_mi = 0 | |
else: | |
key_sig = (key_sig - 1) | |
key_sig_sf = key_sig // 2 - 7 | |
key_sig_mi = key_sig % 2 | |
gen_events = int(gen_events) | |
max_len = gen_events | |
if seed_rand: | |
seed = random.randint(0, MAX_SEED) | |
generator = np.random.RandomState(seed) | |
disable_patch_change = False | |
disable_channels = None | |
if tab == 0: | |
i = 0 | |
mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)] | |
if tokenizer.version == "v2": | |
if time_sig is not None: | |
mid.append(tokenizer.event2tokens(["time_signature", 0, 0, 0, time_sig_nn - 1, time_sig_dd - 1])) | |
if key_sig is not None: | |
mid.append(tokenizer.event2tokens(["key_signature", 0, 0, 0, key_sig_sf + 7, key_sig_mi])) | |
if bpm != 0: | |
mid.append(tokenizer.event2tokens(["set_tempo", 0, 0, 0, bpm])) | |
patches = {} | |
if instruments is None: | |
instruments = [] | |
for instr in instruments: | |
patches[i] = patch2number[instr] | |
i = (i + 1) if i != 8 else 10 | |
if drum_kit != "None": | |
patches[9] = drum_kits2number[drum_kit] | |
for i, (c, p) in enumerate(patches.items()): | |
mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i + 1, c, p])) | |
mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64) | |
mid_seq = mid.tolist() | |
if len(instruments) > 0: | |
disable_patch_change = True | |
disable_channels = [i for i in range(16) if i not in patches] | |
elif tab == 1 and mid is not None: | |
eps = 4 if reduce_cc_st else 0 | |
mid = tokenizer.tokenize(MIDI.midi2score(mid), cc_eps=eps, tempo_eps=eps, | |
remap_track_channel=remap_track_channel, | |
add_default_instr=add_default_instr, | |
remove_empty_channels=remove_empty_channels) | |
mid = mid[:int(midi_events)] | |
mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64) | |
mid_seq = mid.tolist() | |
elif tab == 2 and mid_seq is not None: | |
mid = np.asarray(mid_seq, dtype=np.int64) | |
if continuation_select > 0: | |
continuation_state.append(mid_seq) | |
mid = np.repeat(mid[continuation_select - 1:continuation_select], repeats=OUTPUT_BATCH_SIZE, axis=0) | |
mid_seq = mid.tolist() | |
else: | |
continuation_state.append(mid.shape[1]) | |
else: | |
continuation_state = [0] | |
mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)] | |
mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64) | |
mid_seq = mid.tolist() | |
if mid is not None: | |
max_len += mid.shape[1] | |
init_msgs = [create_msg("progress", [0, gen_events])] | |
if not (tab == 2 and continuation_select == 0): | |
for i in range(OUTPUT_BATCH_SIZE): | |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]] | |
init_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]), | |
create_msg("visualizer_append", [i, events])] | |
yield mid_seq, continuation_state, seed, send_msgs(init_msgs) | |
midi_generator = generate(model, mid, batch_size=OUTPUT_BATCH_SIZE, max_len=max_len, temp=temp, | |
top_p=top_p, top_k=top_k, disable_patch_change=disable_patch_change, | |
disable_control_change=not allow_cc, disable_channels=disable_channels, | |
generator=generator) | |
events = [list() for i in range(OUTPUT_BATCH_SIZE)] | |
t = time.time() + 1 | |
for i, token_seqs in enumerate(midi_generator): | |
token_seqs = token_seqs.tolist() | |
for j in range(OUTPUT_BATCH_SIZE): | |
token_seq = token_seqs[j] | |
mid_seq[j].append(token_seq) | |
events[j].append(tokenizer.tokens2event(token_seq)) | |
if time.time() - t > 0.5: | |
msgs = [create_msg("progress", [i + 1, gen_events])] | |
for j in range(OUTPUT_BATCH_SIZE): | |
msgs += [create_msg("visualizer_append", [j, events[j]])] | |
events[j] = list() | |
yield mid_seq, continuation_state, seed, send_msgs(msgs) | |
t = time.time() | |
yield mid_seq, continuation_state, seed, send_msgs([]) | |
def finish_run(model_name, mid_seq): | |
if mid_seq is None: | |
outputs = [None] * OUTPUT_BATCH_SIZE | |
return *outputs, [] | |
tokenizer = models[model_name][2] | |
outputs = [] | |
end_msgs = [create_msg("progress", [0, 0])] | |
if not os.path.exists("outputs"): | |
os.mkdir("outputs") | |
for i in range(OUTPUT_BATCH_SIZE): | |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]] | |
mid = tokenizer.detokenize(mid_seq[i]) | |
with open(f"outputs/output{i + 1}.mid", 'wb') as f: | |
f.write(MIDI.score2midi(mid)) | |
outputs.append(f"outputs/output{i + 1}.mid") | |
end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]), | |
create_msg("visualizer_append", [i, events]), | |
create_msg("visualizer_end", i)] | |
return *outputs, send_msgs(end_msgs) | |
def synthesis_task(mid): | |
return synthesizer.synthesis(MIDI.score2opus(mid)) | |
def render_audio(model_name, mid_seq, should_render_audio): | |
if (not should_render_audio) or mid_seq is None: | |
outputs = [None] * OUTPUT_BATCH_SIZE | |
return tuple(outputs) | |
tokenizer = models[model_name][2] | |
outputs = [] | |
if not os.path.exists("outputs"): | |
os.mkdir("outputs") | |
audio_futures = [] | |
for i in range(OUTPUT_BATCH_SIZE): | |
mid = tokenizer.detokenize(mid_seq[i]) | |
audio_future = thread_pool.submit(synthesis_task, mid) | |
audio_futures.append(audio_future) | |
for future in audio_futures: | |
outputs.append((44100, future.result())) | |
if OUTPUT_BATCH_SIZE == 1: | |
return outputs[0] | |
return tuple(outputs) | |
def undo_continuation(model_name, mid_seq, continuation_state): | |
if mid_seq is None or len(continuation_state) < 2: | |
return mid_seq, continuation_state, send_msgs([]) | |
tokenizer = models[model_name][2] | |
if isinstance(continuation_state[-1], list): | |
mid_seq = continuation_state[-1] | |
else: | |
mid_seq = [ms[:continuation_state[-1]] for ms in mid_seq] | |
continuation_state = continuation_state[:-1] | |
end_msgs = [create_msg("progress", [0, 0])] | |
for i in range(OUTPUT_BATCH_SIZE): | |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]] | |
end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]), | |
create_msg("visualizer_append", [i, events]), | |
create_msg("visualizer_end", i)] | |
return mid_seq, continuation_state, send_msgs(end_msgs) | |
def load_javascript(dir="javascript"): | |
scripts_list = glob.glob(f"{dir}/*.js") | |
javascript = "" | |
for path in scripts_list: | |
with open(path, "r", encoding="utf8") as jsfile: | |
js_content = jsfile.read() | |
js_content = js_content.replace("const MIDI_OUTPUT_BATCH_SIZE=4;", | |
f"const MIDI_OUTPUT_BATCH_SIZE={OUTPUT_BATCH_SIZE};") | |
javascript += f"\n<!-- {path} --><script>{js_content}</script>" | |
template_response_ori = gr.routes.templates.TemplateResponse | |
def template_response(*args, **kwargs): | |
res = template_response_ori(*args, **kwargs) | |
res.body = res.body.replace( | |
b'</head>', f'{javascript}</head>'.encode("utf8")) | |
res.init_headers() | |
return res | |
gr.routes.templates.TemplateResponse = template_response | |
def hf_hub_download_retry(repo_id, filename): | |
print(f"downloading {repo_id} {filename}") | |
retry = 0 | |
err = None | |
while retry < 30: | |
try: | |
return hf_hub_download(repo_id=repo_id, filename=filename) | |
except Exception as e: | |
err = e | |
retry += 1 | |
if err: | |
raise err | |
def get_tokenizer(config_name): | |
tv, size = config_name.split("-") | |
tv = tv[1:] | |
if tv[-1] == "o": | |
o = True | |
tv = tv[:-1] | |
else: | |
o = False | |
if tv not in ["v1", "v2"]: | |
raise ValueError(f"Unknown tokenizer version {tv}") | |
tokenizer = MIDITokenizer(tv) | |
tokenizer.set_optimise_midi(o) | |
return tokenizer | |
number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz", | |
40: "Blush", 48: "Orchestra"} | |
patch2number = {v: k for k, v in MIDI.Number2patch.items()} | |
drum_kits2number = {v: k for k, v in number2drum_kits.items()} | |
key_signatures = ['C♭', 'A♭m', 'G♭', 'E♭m', 'D♭', 'B♭m', 'A♭', 'Fm', 'E♭', 'Cm', 'B♭', 'Gm', 'F', 'Dm', | |
'C', 'Am', 'G', 'Em', 'D', 'Bm', 'A', 'F♯m', 'E', 'C♯m', 'B', 'G♯m', 'F♯', 'D♯m', 'C♯', 'A♯m'] | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
parser.add_argument("--port", type=int, default=7860, help="gradio server port") | |
parser.add_argument("--device", type=str, default="cuda", help="device to run model") | |
parser.add_argument("--batch", type=int, default=8, help="batch size") | |
parser.add_argument("--max-gen", type=int, default=1024, help="max") | |
opt = parser.parse_args() | |
OUTPUT_BATCH_SIZE = opt.batch | |
soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2") | |
thread_pool = ThreadPoolExecutor(max_workers=OUTPUT_BATCH_SIZE) | |
synthesizer = MidiSynthesizer(soundfont_path) | |
models_info = { | |
"generic pretrain model (tv2o-medium) by skytnt": [ | |
"skytnt/midi-model-tv2o-medium", "", "tv2o-medium", { | |
"jpop": "skytnt/midi-model-tv2om-jpop-lora", | |
"touhou": "skytnt/midi-model-tv2om-touhou-lora" | |
} | |
], | |
"generic pretrain model (tv2o-large) by asigalov61": [ | |
"asigalov61/Music-Llama", "", "tv2o-large", {} | |
], | |
"generic pretrain model (tv2o-medium) by asigalov61": [ | |
"asigalov61/Music-Llama-Medium", "", "tv2o-medium", {} | |
], | |
"generic pretrain model (tv1-medium) by skytnt": [ | |
"skytnt/midi-model", "", "tv1-medium", {} | |
] | |
} | |
models = {} | |
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] | |
device = "cuda" | |
for name, (repo_id, path, config, loras) in models_info.items(): | |
model_base_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_base.onnx") | |
model_token_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_token.onnx") | |
tokenizer = get_tokenizer(config) | |
models[name] = [model_base_path, model_token_path, tokenizer] | |
for lora_name, lora_repo in loras.items(): | |
model_base_path = hf_hub_download_retry(repo_id=lora_repo, filename=f"onnx/model_base.onnx") | |
model_token_path = hf_hub_download_retry(repo_id=lora_repo, filename=f"onnx/model_token.onnx") | |
tokenizer = get_tokenizer(config) | |
models[f"{name} with {lora_name} lora"] = [model_base_path, model_token_path, tokenizer] | |
load_javascript() | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>") | |
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=skytnt.midi-composer&style=flat)\n\n" | |
"Midi event transformer for symbolic music generation\n\n" | |
"Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n" | |
"[Open In Colab]" | |
"(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)" | |
" or [download windows app](https://github.com/SkyTNT/midi-model/releases)" | |
" for unlimited generation\n\n" | |
"**Update v1.3**: MIDITokenizerV2 and new MidiVisualizer\n\n" | |
"The current **best** model: generic pretrain model (tv2o-medium) by skytnt" | |
) | |
js_msg = gr.Textbox(elem_id="msg_receiver", visible=False) | |
js_msg.change(None, [js_msg], [], js=""" | |
(msg_json) =>{ | |
let msgs = JSON.parse(msg_json); | |
executeCallbacks(msgReceiveCallbacks, msgs); | |
return []; | |
} | |
""") | |
input_model = gr.Dropdown(label="select model", choices=list(models.keys()), | |
type="value", value=list(models.keys())[0]) | |
tab_select = gr.State(value=0) | |
with gr.Tabs(): | |
with gr.TabItem("custom prompt") as tab1: | |
input_instruments = gr.Dropdown(label="🪗instruments (auto if empty)", choices=list(patch2number.keys()), | |
multiselect=True, max_choices=15, type="value") | |
input_drum_kit = gr.Dropdown(label="🥁drum kit", choices=list(drum_kits2number.keys()), type="value", | |
value="None") | |
input_bpm = gr.Slider(label="BPM (beats per minute, auto if 0)", minimum=0, maximum=255, | |
step=1, | |
value=0) | |
input_time_sig = gr.Radio(label="time signature (only for tv2 models)", | |
value="auto", | |
choices=["auto", "4/4", "2/4", "3/4", "6/4", "7/4", | |
"2/2", "3/2", "4/2", "3/8", "5/8", "6/8", "7/8", "9/8", "12/8"] | |
) | |
input_key_sig = gr.Radio(label="key signature (only for tv2 models)", | |
value="auto", | |
choices=["auto"] + key_signatures, | |
type="index" | |
) | |
example1 = gr.Examples([ | |
[[], "None"], | |
[["Acoustic Grand"], "None"], | |
[['Acoustic Grand', 'SynthStrings 2', 'SynthStrings 1', 'Pizzicato Strings', | |
'Pad 2 (warm)', 'Tremolo Strings', 'String Ensemble 1'], "Orchestra"], | |
[['Trumpet', 'Oboe', 'Trombone', 'String Ensemble 1', 'Clarinet', | |
'French Horn', 'Pad 4 (choir)', 'Bassoon', 'Flute'], "None"], | |
[['Flute', 'French Horn', 'Clarinet', 'String Ensemble 2', 'English Horn', 'Bassoon', | |
'Oboe', 'Pizzicato Strings'], "Orchestra"], | |
[['Electric Piano 2', 'Lead 5 (charang)', 'Electric Bass(pick)', 'Lead 2 (sawtooth)', | |
'Pad 1 (new age)', 'Orchestra Hit', 'Cello', 'Electric Guitar(clean)'], "Standard"], | |
[["Electric Guitar(clean)", "Electric Guitar(muted)", "Overdriven Guitar", "Distortion Guitar", | |
"Electric Bass(finger)"], "Standard"] | |
], [input_instruments, input_drum_kit]) | |
with gr.TabItem("midi prompt") as tab2: | |
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary") | |
input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512, | |
step=1, | |
value=128) | |
input_reduce_cc_st = gr.Checkbox(label="reduce control_change and set_tempo events", value=True) | |
input_remap_track_channel = gr.Checkbox( | |
label="remap tracks and channels so each track has only one channel and in order", value=True) | |
input_add_default_instr = gr.Checkbox( | |
label="add a default instrument to channels that don't have an instrument", value=True) | |
input_remove_empty_channels = gr.Checkbox(label="remove channels without notes", value=False) | |
example2 = gr.Examples([[file, 128] for file in glob.glob("example/*.mid")], | |
[input_midi, input_midi_events]) | |
with gr.TabItem("last output prompt") as tab3: | |
gr.Markdown("Continue generating on the last output.") | |
input_continuation_select = gr.Radio(label="select output to continue generating", value="all", | |
choices=["all"] + [f"output{i + 1}" for i in | |
range(OUTPUT_BATCH_SIZE)], | |
type="index" | |
) | |
undo_btn = gr.Button("undo the last continuation") | |
tab1.select(lambda: 0, None, tab_select, queue=False) | |
tab2.select(lambda: 1, None, tab_select, queue=False) | |
tab3.select(lambda: 2, None, tab_select, queue=False) | |
input_seed = gr.Slider(label="seed", minimum=0, maximum=2 ** 31 - 1, | |
step=1, value=0) | |
input_seed_rand = gr.Checkbox(label="random seed", value=True) | |
input_gen_events = gr.Slider(label="generate max n midi events", minimum=1, maximum=opt.max_gen, | |
step=1, value=opt.max_gen // 2) | |
with gr.Accordion("options", open=False): | |
input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1) | |
input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.95) | |
input_top_k = gr.Slider(label="top k", minimum=1, maximum=128, step=1, value=20) | |
input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True) | |
input_render_audio = gr.Checkbox(label="render audio after generation", value=True) | |
example3 = gr.Examples([[1, 0.94, 128], [1, 0.98, 20], [1, 0.98, 12]], | |
[input_temp, input_top_p, input_top_k]) | |
run_btn = gr.Button("generate", variant="primary") | |
# stop_btn = gr.Button("stop and output") | |
output_midi_seq = gr.State() | |
output_continuation_state = gr.State([0]) | |
midi_outputs = [] | |
audio_outputs = [] | |
with gr.Tabs(elem_id="output_tabs"): | |
for i in range(OUTPUT_BATCH_SIZE): | |
with gr.TabItem(f"output {i + 1}") as tab1: | |
output_midi_visualizer = gr.HTML(elem_id=f"midi_visualizer_container_{i}") | |
output_audio = gr.Audio(label="output audio", format="mp3", elem_id=f"midi_audio_{i}") | |
output_midi = gr.File(label="output midi", file_types=[".mid"]) | |
midi_outputs.append(output_midi) | |
audio_outputs.append(output_audio) | |
run_event = run_btn.click(run, [input_model, tab_select, output_midi_seq, output_continuation_state, | |
input_continuation_select, input_instruments, input_drum_kit, input_bpm, | |
input_time_sig, input_key_sig, input_midi, input_midi_events, | |
input_reduce_cc_st, input_remap_track_channel, | |
input_add_default_instr, input_remove_empty_channels, | |
input_seed, input_seed_rand, input_gen_events, input_temp, input_top_p, | |
input_top_k, input_allow_cc], | |
[output_midi_seq, output_continuation_state, input_seed, js_msg], | |
concurrency_limit=10, queue=True) | |
finish_run_event = run_event.then(fn=finish_run, | |
inputs=[input_model, output_midi_seq], | |
outputs=midi_outputs + [js_msg], | |
queue=False) | |
finish_run_event.then(fn=render_audio, | |
inputs=[input_model, output_midi_seq, input_render_audio], | |
outputs=audio_outputs, | |
queue=False) | |
# stop_btn.click(None, [], [], cancels=run_event, | |
# queue=False) | |
undo_btn.click(undo_continuation, [input_model, output_midi_seq, output_continuation_state], | |
[output_midi_seq, output_continuation_state, js_msg], queue=False) | |
app.queue().launch(server_port=opt.port, share=opt.share, inbrowser=True) | |
thread_pool.shutdown() | |