midi-composer / app.py
skytnt's picture
seed
bb51a02
raw
history blame
22.2 kB
import spaces
import random
import argparse
import glob
import json
import os
import time
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
from huggingface_hub import hf_hub_download
import MIDI
from midi_model import MIDIModel, MIDIModelConfig
from midi_synthesizer import MidiSynthesizer
MAX_SEED = np.iinfo(np.int32).max
in_space = os.getenv("SYSTEM") == "spaces"
@torch.inference_mode()
def generate(model: MIDIModel, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
tokenizer = model.tokenizer
if disable_channels is not None:
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
else:
disable_channels = []
max_token_seq = tokenizer.max_token_seq
if prompt is None:
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device)
input_tensor[0, 0] = tokenizer.bos_id # bos
else:
prompt = prompt[:, :max_token_seq]
if prompt.shape[-1] < max_token_seq:
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device)
input_tensor = input_tensor.unsqueeze(0)
cur_len = input_tensor.shape[1]
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
with bar:
while cur_len < max_len:
end = False
hidden = model.forward(input_tensor)[0, -1].unsqueeze(0)
next_token_seq = None
event_name = ""
for i in range(max_token_seq):
mask = torch.zeros(tokenizer.vocab_size, dtype=torch.int64, device=model.device)
if i == 0:
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
if disable_patch_change:
mask_ids.remove(tokenizer.event_ids["patch_change"])
if disable_control_change:
mask_ids.remove(tokenizer.event_ids["control_change"])
mask[mask_ids] = 1
else:
param_name = tokenizer.events[event_name][i - 1]
mask_ids = tokenizer.parameter_ids[param_name]
if param_name == "channel":
mask_ids = [i for i in mask_ids if i not in disable_channels]
mask[mask_ids] = 1
logits = model.forward_token(hidden, next_token_seq)[:, -1:]
scores = torch.softmax(logits / temp, dim=-1) * mask
sample = model.sample_top_p_k(scores, top_p, top_k, generator=generator)
if i == 0:
next_token_seq = sample
eid = sample.item()
if eid == tokenizer.eos_id:
end = True
break
event_name = tokenizer.id_events[eid]
else:
next_token_seq = torch.cat([next_token_seq, sample], dim=1)
if len(tokenizer.events[event_name]) == i:
break
if next_token_seq.shape[1] < max_token_seq:
next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
"constant", value=tokenizer.pad_id)
next_token_seq = next_token_seq.unsqueeze(1)
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
cur_len += 1
bar.update(1)
yield next_token_seq.reshape(-1).cpu().numpy()
if end:
break
def create_msg(name, data):
return {"name": name, "data": data}
def send_msgs(msgs):
return json.dumps(msgs)
def get_duration(model_name, tab, mid_seq, continuation_state, instruments, drum_kit, bpm, time_sig,
key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr,
remove_empty_channels, seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc):
if "large" in model_name:
return gen_events // 10
else:
return gen_events // 20
@spaces.GPU(duration=get_duration)
def run(model_name, tab, mid_seq, continuation_state, instruments, drum_kit, bpm, time_sig, key_sig, mid, midi_events,
reduce_cc_st, remap_track_channel, add_default_instr, remove_empty_channels, seed, seed_rand,
gen_events, temp, top_p, top_k, allow_cc):
model = models[model_name]
model.to(device=opt.device, dtype=torch.bfloat16 if opt.device == "cuda" else torch.float32).eval()
tokenizer = model.tokenizer
bpm = int(bpm)
if time_sig == "auto":
time_sig = None
time_sig_nn = 4
time_sig_dd = 2
else:
time_sig_nn, time_sig_dd = time_sig.split('/')
time_sig_nn = int(time_sig_nn)
time_sig_dd = {2: 1, 4: 2, 8: 3}[int(time_sig_dd)]
if key_sig == 0:
key_sig = None
key_sig_sf = 0
key_sig_mi = 0
else:
key_sig = (key_sig - 1)
key_sig_sf = key_sig // 2 - 7
key_sig_mi = key_sig % 2
gen_events = int(gen_events)
max_len = gen_events
if seed_rand:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(opt.device).manual_seed(seed)
disable_patch_change = False
disable_channels = None
if tab == 0:
i = 0
mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
if tokenizer.version == "v2":
if time_sig is not None:
mid.append(tokenizer.event2tokens(["time_signature", 0, 0, 0, time_sig_nn - 1, time_sig_dd - 1]))
if key_sig is not None:
mid.append(tokenizer.event2tokens(["key_signature", 0, 0, 0, key_sig_sf + 7, key_sig_mi]))
if bpm != 0:
mid.append(tokenizer.event2tokens(["set_tempo", 0, 0, 0, bpm]))
patches = {}
if instruments is None:
instruments = []
for instr in instruments:
patches[i] = patch2number[instr]
i = (i + 1) if i != 8 else 10
if drum_kit != "None":
patches[9] = drum_kits2number[drum_kit]
for i, (c, p) in enumerate(patches.items()):
mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i + 1, c, p]))
mid_seq = mid
mid = np.asarray(mid, dtype=np.int64)
if len(instruments) > 0:
disable_patch_change = True
disable_channels = [i for i in range(16) if i not in patches]
elif tab == 1 and mid is not None:
eps = 4 if reduce_cc_st else 0
mid = tokenizer.tokenize(MIDI.midi2score(mid), cc_eps=eps, tempo_eps=eps,
remap_track_channel=remap_track_channel,
add_default_instr=add_default_instr,
remove_empty_channels=remove_empty_channels)
mid = np.asarray(mid, dtype=np.int64)
mid = mid[:int(midi_events)]
mid_seq = []
for token_seq in mid:
mid_seq.append(token_seq.tolist())
elif tab == 2 and mid_seq is not None:
continuation_state.append(len(mid_seq))
mid = np.asarray(mid_seq, dtype=np.int64)
else:
continuation_state = [0]
mid_seq = []
mid = None
if mid is not None:
max_len += len(mid)
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
init_msgs = [create_msg("progress", [0, gen_events])]
if tab != 2:
init_msgs += [create_msg("visualizer_clear", tokenizer.version),
create_msg("visualizer_append", events)]
yield mid_seq, continuation_state, None, None, seed, send_msgs(init_msgs)
ctx = torch.amp.autocast(device_type=opt.device, dtype=torch.bfloat16, enabled=opt.device != "cpu")
with ctx:
midi_generator = generate(model, mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
disable_channels=disable_channels, generator=generator)
events = []
t = time.time() + 1
for i, token_seq in enumerate(midi_generator):
token_seq = token_seq.tolist()
mid_seq.append(token_seq)
events.append(tokenizer.tokens2event(token_seq))
ct = time.time()
if ct - t > 0.5:
yield (mid_seq, continuation_state, None, None, seed,
send_msgs([create_msg("visualizer_append", events),
create_msg("progress", [i + 1, gen_events])]))
t = ct
events = []
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
mid = tokenizer.detokenize(mid_seq)
audio = synthesizer.synthesis(MIDI.score2opus(mid))
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi(mid))
end_msgs = [create_msg("visualizer_clear", tokenizer.version),
create_msg("visualizer_append", events),
create_msg("visualizer_end", None),
create_msg("progress", [0, 0])]
yield mid_seq, continuation_state, "output.mid", (44100, audio), seed, send_msgs(end_msgs)
def cancel_run(model_name, mid_seq):
if mid_seq is None:
return None, None, []
tokenizer = models[model_name].tokenizer
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
mid = tokenizer.detokenize(mid_seq)
audio = synthesizer.synthesis(MIDI.score2opus(mid))
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi(mid))
end_msgs = [create_msg("visualizer_clear", tokenizer.version),
create_msg("visualizer_append", events),
create_msg("visualizer_end", None),
create_msg("progress", [0, 0])]
return "output.mid", (44100, audio), send_msgs(end_msgs)
def undo_continuation(model_name, mid_seq, continuation_state):
if mid_seq is None or len(continuation_state) < 2:
return mid_seq, continuation_state, send_msgs([])
mid_seq = mid_seq[:continuation_state[-1]]
continuation_state = continuation_state[:-1]
tokenizer = models[model_name].tokenizer
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
end_msgs = [create_msg("visualizer_clear", tokenizer.version),
create_msg("visualizer_append", events),
create_msg("visualizer_end", None),
create_msg("progress", [0, 0])]
return mid_seq, continuation_state, send_msgs(end_msgs)
def load_javascript(dir="javascript"):
scripts_list = glob.glob(f"{dir}/*.js")
javascript = ""
for path in scripts_list:
with open(path, "r", encoding="utf8") as jsfile:
javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>"
template_response_ori = gr.routes.templates.TemplateResponse
def template_response(*args, **kwargs):
res = template_response_ori(*args, **kwargs)
res.body = res.body.replace(
b'</head>', f'{javascript}</head>'.encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = template_response
def hf_hub_download_retry(repo_id, filename):
print(f"downloading {repo_id} {filename}")
retry = 0
err = None
while retry < 30:
try:
return hf_hub_download(repo_id=repo_id, filename=filename)
except Exception as e:
err = e
retry += 1
if err:
raise err
number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
40: "Blush", 48: "Orchestra"}
patch2number = {v: k for k, v in MIDI.Number2patch.items()}
drum_kits2number = {v: k for k, v in number2drum_kits.items()}
key_signatures = ['C♭', 'A♭m', 'G♭', 'E♭m', 'D♭', 'B♭m', 'A♭', 'Fm', 'E♭', 'Cm', 'B♭', 'Gm', 'F', 'Dm',
'C', 'Am', 'G', 'Em', 'D', 'Bm', 'A', 'F♯m', 'E', 'C♯m', 'B', 'G♯m', 'F♯', 'D♯m', 'C♯', 'A♯m']
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
parser.add_argument("--device", type=str, default="cuda", help="device to run model")
parser.add_argument("--max-gen", type=int, default=1024, help="max")
opt = parser.parse_args()
soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2")
synthesizer = MidiSynthesizer(soundfont_path)
models_info = {"generic pretrain model (tv2o-medium) by skytnt": ["skytnt/midi-model-tv2o-medium", "", "tv2o-medium"],
"generic pretrain model (tv2o-large) by asigalov61": ["asigalov61/Music-Llama", "", "tv2o-large"],
"generic pretrain model (tv2o-medium) by asigalov61": ["asigalov61/Music-Llama-Medium", "", "tv2o-medium"],
"generic pretrain model (tv1-medium) by skytnt": ["skytnt/midi-model", "", "tv1-medium"],
"j-pop finetune model (tv1-medium) by skytnt": ["skytnt/midi-model-ft", "jpop/", "tv1-medium"],
"touhou finetune model (tv1-medium) by skytnt": ["skytnt/midi-model-ft", "touhou/", "tv1-medium"],
}
models = {}
if opt.device == "cuda":
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
for name, (repo_id, path, config) in models_info.items():
model_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}model.ckpt")
model = MIDIModel(config=MIDIModelConfig.from_name(config))
ckpt = torch.load(model_path, map_location="cpu", weights_only=True)
state_dict = ckpt.get("state_dict", ckpt)
model.load_state_dict(state_dict, strict=False)
models[name] = model
load_javascript()
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>")
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=skytnt.midi-composer&style=flat)\n\n"
"Midi event transformer for music generation\n\n"
"Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
" for faster running and longer generation\n\n"
"**Update v1.2**: Optimise the tokenizer and dataset"
)
js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
js_msg.change(None, [js_msg], [], js="""
(msg_json) =>{
let msgs = JSON.parse(msg_json);
executeCallbacks(msgReceiveCallbacks, msgs);
return [];
}
""")
input_model = gr.Dropdown(label="select model", choices=list(models.keys()),
type="value", value=list(models.keys())[0])
tab_select = gr.State(value=0)
with gr.Tabs():
with gr.TabItem("custom prompt") as tab1:
input_instruments = gr.Dropdown(label="🪗instruments (auto if empty)", choices=list(patch2number.keys()),
multiselect=True, max_choices=15, type="value")
input_drum_kit = gr.Dropdown(label="🥁drum kit", choices=list(drum_kits2number.keys()), type="value",
value="None")
input_bpm = gr.Slider(label="BPM (beats per minute, auto if 0)", minimum=0, maximum=255,
step=1,
value=0)
input_time_sig = gr.Radio(label="time signature (only for tv2 models)",
value="auto",
choices=["auto", "4/4", "2/4", "3/4", "6/4", "7/4",
"2/2", "3/2", "4/2", "3/8", "5/8", "6/8", "7/8", "9/8", "12/8"]
)
input_key_sig = gr.Radio(label="key signature (only for tv2 models)",
value="auto",
choices=["auto"] + key_signatures,
type="index"
)
example1 = gr.Examples([
[[], "None"],
[["Acoustic Grand"], "None"],
[['Acoustic Grand', 'SynthStrings 2', 'SynthStrings 1', 'Pizzicato Strings',
'Pad 2 (warm)', 'Tremolo Strings', 'String Ensemble 1'], "Orchestra"],
[['Trumpet', 'Oboe', 'Trombone', 'String Ensemble 1', 'Clarinet',
'French Horn', 'Pad 4 (choir)', 'Bassoon', 'Flute'], "None"],
[['Flute', 'French Horn', 'Clarinet', 'String Ensemble 2', 'English Horn', 'Bassoon',
'Oboe', 'Pizzicato Strings'], "Orchestra"],
[['Electric Piano 2', 'Lead 5 (charang)', 'Electric Bass(pick)', 'Lead 2 (sawtooth)',
'Pad 1 (new age)', 'Orchestra Hit', 'Cello', 'Electric Guitar(clean)'], "Standard"],
[["Electric Guitar(clean)", "Electric Guitar(muted)", "Overdriven Guitar", "Distortion Guitar",
"Electric Bass(finger)"], "Standard"]
], [input_instruments, input_drum_kit])
with gr.TabItem("midi prompt") as tab2:
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary")
input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
step=1,
value=128)
input_reduce_cc_st = gr.Checkbox(label="reduce control_change and set_tempo events", value=True)
input_remap_track_channel = gr.Checkbox(
label="remap tracks and channels so each track has only one channel and in order", value=True)
input_add_default_instr = gr.Checkbox(
label="add a default instrument to channels that don't have an instrument", value=True)
input_remove_empty_channels = gr.Checkbox(label="remove channels without notes", value=False)
example2 = gr.Examples([[file, 128] for file in glob.glob("example/*.mid")],
[input_midi, input_midi_events])
with gr.TabItem("last output prompt") as tab3:
gr.Markdown("Continue generating on the last output. Just click the generate button")
undo_btn = gr.Button("undo the last continuation")
tab1.select(lambda: 0, None, tab_select, queue=False)
tab2.select(lambda: 1, None, tab_select, queue=False)
tab3.select(lambda: 2, None, tab_select, queue=False)
input_seed = gr.Slider(label="seed", minimum=0, maximum=2 ** 31 - 1,
step=1, value=0)
input_seed_rand = gr.Checkbox(label="random seed", value=True)
input_gen_events = gr.Slider(label="generate max n midi events", minimum=1, maximum=opt.max_gen,
step=1, value=opt.max_gen // 2)
with gr.Accordion("options", open=False):
input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.98)
input_top_k = gr.Slider(label="top k", minimum=1, maximum=128, step=1, value=30)
input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
example3 = gr.Examples([[1, 0.95, 128], [1, 0.98, 20], [1, 0.98, 12]],
[input_temp, input_top_p, input_top_k])
run_btn = gr.Button("generate", variant="primary")
stop_btn = gr.Button("stop and output")
output_midi_seq = gr.State()
output_continuation_state = gr.State([0])
output_midi_visualizer = gr.HTML(elem_id="midi_visualizer_container")
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
output_midi = gr.File(label="output midi", file_types=[".mid"])
run_event = run_btn.click(run, [input_model, tab_select, output_midi_seq, output_continuation_state,
input_instruments, input_drum_kit, input_bpm, input_time_sig, input_key_sig,
input_midi, input_midi_events, input_reduce_cc_st, input_remap_track_channel,
input_add_default_instr, input_remove_empty_channels,
input_seed, input_seed_rand, input_gen_events, input_temp, input_top_p,
input_top_k, input_allow_cc],
[output_midi_seq, output_continuation_state,
output_midi, output_audio, input_seed, js_msg],
concurrency_limit=10)
stop_btn.click(cancel_run, [input_model, output_midi_seq],
[output_midi, output_audio, js_msg],
cancels=run_event, queue=False)
undo_btn.click(undo_continuation, [input_model, output_midi_seq, output_continuation_state],
[output_midi_seq, output_continuation_state, js_msg], queue=False)
app.queue().launch(server_port=opt.port, share=opt.share, inbrowser=True)