refactor
Browse files- .gitignore +2 -0
- .vscode/launch.json +15 -0
- Dockerfile +19 -7
- Makefile +2 -0
- app.py +0 -7
- compose.yaml +7 -0
- main.py +299 -0
- models/.gitignore +2 -0
- requirements.txt +9 -2
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.venv/*
|
2 |
+
data/*
|
.vscode/launch.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
// Use IntelliSense to learn about possible attributes.
|
3 |
+
// Hover to view descriptions of existing attributes.
|
4 |
+
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
5 |
+
"version": "0.2.0",
|
6 |
+
"configurations": [
|
7 |
+
{
|
8 |
+
"name": "Python Debugger: App",
|
9 |
+
"type": "debugpy",
|
10 |
+
"request": "launch",
|
11 |
+
"program": "main.py",
|
12 |
+
"console": "integratedTerminal"
|
13 |
+
}
|
14 |
+
]
|
15 |
+
}
|
Dockerfile
CHANGED
@@ -1,16 +1,28 @@
|
|
1 |
-
#
|
2 |
# you will also find guides on how best to write your Dockerfile
|
3 |
|
4 |
FROM python:3.9
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
RUN useradd -m -u 1000 user
|
|
|
|
|
7 |
USER user
|
8 |
-
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
1 |
+
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
# you will also find guides on how best to write your Dockerfile
|
3 |
|
4 |
FROM python:3.9
|
5 |
|
6 |
+
WORKDIR /code
|
7 |
+
|
8 |
+
COPY ./requirements.txt /code/requirements.txt
|
9 |
+
|
10 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
11 |
+
|
12 |
+
# Set up a new user named "user" with user ID 1000
|
13 |
RUN useradd -m -u 1000 user
|
14 |
+
|
15 |
+
# Switch to the "user" user
|
16 |
USER user
|
|
|
17 |
|
18 |
+
# Set home to the user's home directory
|
19 |
+
ENV HOME=/home/user \
|
20 |
+
PATH=/home/user/.local/bin:$PATH
|
21 |
+
|
22 |
+
# Set the working directory to the user's home directory
|
23 |
+
WORKDIR $HOME/app
|
24 |
|
25 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
26 |
+
COPY --chown=user . $HOME/app
|
27 |
|
28 |
+
CMD ["python", "main.py"]
|
|
Makefile
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
up:
|
2 |
+
docker compose up -d --build
|
app.py
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
-
|
3 |
-
app = FastAPI()
|
4 |
-
|
5 |
-
@app.get("/")
|
6 |
-
def greet_json():
|
7 |
-
return {"Hello": "World!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
compose.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
services:
|
2 |
+
app:
|
3 |
+
build: .
|
4 |
+
ports:
|
5 |
+
- 7860:7860
|
6 |
+
volumes:
|
7 |
+
- ./data:/home/user/.cache
|
main.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
from transformers import SamModel, SamProcessor
|
7 |
+
import gradio as gr
|
8 |
+
import supervision as sv
|
9 |
+
from PIL import Image, ImageDraw
|
10 |
+
from ultralytics import YOLO
|
11 |
+
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
|
12 |
+
|
13 |
+
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
|
14 |
+
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
+
# sam_model_reg = sam_model_registry["default"]
|
18 |
+
# sam = sam_model_reg(checkpoint="models/sam_vit_h_4b8939.pth").to(device=device)
|
19 |
+
# mask_generator = SamAutomaticMaskGenerator(sam)
|
20 |
+
|
21 |
+
|
22 |
+
# Load the pre-trained SAM model
|
23 |
+
# model_type = "vit_h"
|
24 |
+
# sam = sam_model_registry[model_type](checkpoint="sam_vit_h_4b8939.pth")
|
25 |
+
# sam.to(device=device)
|
26 |
+
|
27 |
+
# model = SamModel.from_pretrained("facebook/sam-vit-base").to(device)
|
28 |
+
# processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
29 |
+
|
30 |
+
# sam = sam_model_registry["default"](checkpoint="./models/sam_vit_h_4b8939.pth")
|
31 |
+
# mask_generator = SamAutomaticMaskGenerator(sam)
|
32 |
+
|
33 |
+
# Create a predictor
|
34 |
+
# predictor = SamPredictor(sam)
|
35 |
+
|
36 |
+
# MODELS_PATH = {
|
37 |
+
# "face_yolov8m.pt": "adetailer/face_yolov8m.pt",
|
38 |
+
# "face_yolov8n.pt": "adetailer/face_yolov8n.pt",
|
39 |
+
# "face_yolov8s.pt": "adetailer/face_yolov8s.pt",
|
40 |
+
# "female_breast_v3.2.pt": "adetailer/female_breast_v3.2.pt",
|
41 |
+
# "hand_yolov8n.pt": "adetailer/hand_yolov8n.pt",
|
42 |
+
# "hand_yolov8s.pt": "adetailer/hand_yolov8s.pt",
|
43 |
+
# "penisV2.pt": "adetailer/penisV2.pt",
|
44 |
+
# "person_yolov8m-seg.pt": "adetailer/person_yolov8m-seg.pt",
|
45 |
+
# "person_yolov8n-seg.pt": "adetailer/person_yolov8n-seg.pt",
|
46 |
+
# "person_yolov8s-seg.pt": "adetailer/person_yolov8s-seg.pt",
|
47 |
+
# "vagina-v2.6.pt": "adetailer/vagina-v2.6.pt",
|
48 |
+
# "deepfashion2_yolov8s-seg.pt": "MaskModels/deepfashion2_yolov8s-seg.pt",
|
49 |
+
# "anzhc_head_hair_seg_medium_no_dill.pt": "adetailer/anzhc_head_hair_seg_medium_no_dill.pt",
|
50 |
+
# "Eyeful_v2-Paired.pt": "adetailer/Eyeful_v2-Paired.pt",
|
51 |
+
# }
|
52 |
+
|
53 |
+
|
54 |
+
torch.hub.download_url_to_file(
|
55 |
+
"https://resources.artworks.ai/ADetailer/face_yolov8m.pt",
|
56 |
+
"models/face_yolov8m.pt",
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
MODELS_CACHE = {}
|
61 |
+
|
62 |
+
|
63 |
+
def cache_models(model_path):
|
64 |
+
global MODELS_CACHE
|
65 |
+
if model_path not in MODELS_CACHE:
|
66 |
+
MODELS_CACHE[model_path] = YOLO(model_path).to(device)
|
67 |
+
return MODELS_CACHE[model_path]
|
68 |
+
|
69 |
+
|
70 |
+
def apply_convex_hull(mask):
|
71 |
+
mask_array = np.array(mask)
|
72 |
+
_, thresh = cv2.threshold(mask_array, 127, 255, 0)
|
73 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
74 |
+
|
75 |
+
for cur in contours:
|
76 |
+
hull = cv2.convexHull(cur)
|
77 |
+
cv2.fillPoly(mask_array, [hull], (255, 255, 255))
|
78 |
+
|
79 |
+
return Image.fromarray(mask_array)
|
80 |
+
|
81 |
+
|
82 |
+
def apply_padding(padding, image, xxyxy):
|
83 |
+
image_width, image_height = image.size
|
84 |
+
xyxy = [int(x) for x in xxyxy]
|
85 |
+
|
86 |
+
width = xyxy[2] - xyxy[0]
|
87 |
+
height = xyxy[3] - xyxy[1]
|
88 |
+
|
89 |
+
padding_x = int((padding - 1) * width / 2)
|
90 |
+
padding_y = int((padding - 1) * height / 2)
|
91 |
+
|
92 |
+
xyxy = [
|
93 |
+
max(0, min(xyxy[0] - padding_x, image_width)),
|
94 |
+
max(0, min(xyxy[1] - padding_y, image_height)),
|
95 |
+
min(image_width, xyxy[2] + padding_x),
|
96 |
+
min(image_height, xyxy[3] + padding_y),
|
97 |
+
]
|
98 |
+
|
99 |
+
return xyxy
|
100 |
+
|
101 |
+
|
102 |
+
def create_mask_from_yolo(image, model_path, padding, convex_hull_required):
|
103 |
+
combined_mask = None
|
104 |
+
ret = []
|
105 |
+
|
106 |
+
model = cache_models(model_path)
|
107 |
+
|
108 |
+
results = model.predict(image)
|
109 |
+
|
110 |
+
for result in results:
|
111 |
+
masks = [] if result.masks is None else result.masks.data
|
112 |
+
for index, mask in enumerate(masks):
|
113 |
+
mask = mask.cpu().numpy()
|
114 |
+
mask = (mask * 255).astype("uint8")
|
115 |
+
mask = cv2.resize(mask, image.size)
|
116 |
+
if combined_mask is None:
|
117 |
+
combined_mask = mask
|
118 |
+
else:
|
119 |
+
combined_mask = np.maximum(combined_mask, mask)
|
120 |
+
|
121 |
+
box = result.boxes[index]
|
122 |
+
|
123 |
+
# @todo: apply `for` instead of `0 index`
|
124 |
+
xxyxy = box.xyxy[0].tolist()
|
125 |
+
xyxy_oring = apply_padding(padding, image, xxyxy)
|
126 |
+
cropped_image = image.crop(xyxy_oring)
|
127 |
+
|
128 |
+
cropped_mask = Image.fromarray(mask)
|
129 |
+
cropped_mask = cropped_mask.crop(xyxy_oring)
|
130 |
+
|
131 |
+
if convex_hull_required:
|
132 |
+
cropped_mask = apply_convex_hull(cropped_mask)
|
133 |
+
|
134 |
+
class_id = box.cls[0].item()
|
135 |
+
class_name = model.names[class_id]
|
136 |
+
confidence = box.conf[0].item()
|
137 |
+
ret.append(
|
138 |
+
(
|
139 |
+
cropped_image,
|
140 |
+
cropped_mask,
|
141 |
+
confidence,
|
142 |
+
class_name,
|
143 |
+
(xyxy_oring[0], xyxy_oring[1]),
|
144 |
+
)
|
145 |
+
)
|
146 |
+
|
147 |
+
if combined_mask is not None:
|
148 |
+
combined_mask_image = Image.fromarray(combined_mask)
|
149 |
+
return [combined_mask_image, ret], "Operation has processed successfully"
|
150 |
+
|
151 |
+
for result in results:
|
152 |
+
boxes = result.boxes
|
153 |
+
for box in boxes:
|
154 |
+
# @todo: apply `for` instead of `0 index`
|
155 |
+
xxyxy = box.xyxy[0].tolist()
|
156 |
+
xyxy = [int(x) for x in xxyxy]
|
157 |
+
mask = Image.new("L", image.size, 0)
|
158 |
+
draw = ImageDraw.Draw(mask)
|
159 |
+
draw.rectangle(xyxy, fill=255)
|
160 |
+
mask = np.array(mask)
|
161 |
+
if combined_mask is None:
|
162 |
+
combined_mask = mask
|
163 |
+
else:
|
164 |
+
combined_mask = np.maximum(combined_mask, mask)
|
165 |
+
|
166 |
+
xyxy_oring = apply_padding(padding, image, xxyxy)
|
167 |
+
|
168 |
+
cropped_mask = Image.new("L", image.size, 0)
|
169 |
+
draw = ImageDraw.Draw(cropped_mask)
|
170 |
+
draw.rectangle(xyxy, fill=255)
|
171 |
+
cropped_mask = cropped_mask.crop(xyxy_oring)
|
172 |
+
|
173 |
+
cropped_image = image.crop(xyxy_oring)
|
174 |
+
|
175 |
+
class_id = box.cls[0].item()
|
176 |
+
class_name = model.names[class_id]
|
177 |
+
confidence = box.conf[0].item()
|
178 |
+
ret.append(
|
179 |
+
(
|
180 |
+
cropped_image,
|
181 |
+
cropped_mask,
|
182 |
+
confidence,
|
183 |
+
class_name,
|
184 |
+
(xyxy_oring[0], xyxy_oring[1]),
|
185 |
+
)
|
186 |
+
)
|
187 |
+
|
188 |
+
if combined_mask is not None:
|
189 |
+
combined_mask_image = Image.fromarray(combined_mask)
|
190 |
+
return [combined_mask_image, ret], "Operation has processed successfully"
|
191 |
+
|
192 |
+
return [], "No masks has been found"
|
193 |
+
|
194 |
+
|
195 |
+
# @dataclass
|
196 |
+
# class SamPredictResponse:
|
197 |
+
# image: Optional[str] = Field(None)
|
198 |
+
# mask: str
|
199 |
+
# confidence: Optional[float] = Field(-1)
|
200 |
+
# class_name: Optional[str] = Field("unknown")
|
201 |
+
# coordinates: list[int] = Field((0, 0))
|
202 |
+
|
203 |
+
|
204 |
+
def predict(inp) -> dict[str, float]:
|
205 |
+
mask, message = create_mask_from_yolo(
|
206 |
+
inp,
|
207 |
+
"./models/face_yolov8m.pt",
|
208 |
+
1,
|
209 |
+
False,
|
210 |
+
)
|
211 |
+
print(message)
|
212 |
+
|
213 |
+
# result = []
|
214 |
+
# if len(mask) == 9:
|
215 |
+
# result.append(SamPredictResponse(mask=encode_to_base64(mask[5])))
|
216 |
+
# elif len(mask) == 2:
|
217 |
+
# for cur in mask[1]:
|
218 |
+
# result.append(
|
219 |
+
# SamPredictResponse(
|
220 |
+
# # image=encode_to_base64(cur[0]),
|
221 |
+
# # mask=encode_to_base64(cur[1]),
|
222 |
+
# confidence=cur[2],
|
223 |
+
# class_name=cur[3],
|
224 |
+
# coordinates=(cur[4][0], cur[4][1]),
|
225 |
+
# )
|
226 |
+
# )
|
227 |
+
|
228 |
+
# return mask[1][0][0]
|
229 |
+
return mask[1][0][0], mask[1][0][1]
|
230 |
+
# return result
|
231 |
+
|
232 |
+
# masks = mask_generator.generate(np.array(inp))
|
233 |
+
|
234 |
+
# inputs = processor(np.array(inp), input_points=None, return_tensors="pt").to(device)
|
235 |
+
|
236 |
+
# with torch.no_grad():
|
237 |
+
# outputs = model(**inputs)
|
238 |
+
|
239 |
+
# masks = processor.image_processor.post_process_masks(
|
240 |
+
# outputs.pred_masks.cpu(),
|
241 |
+
# inputs["original_sizes"].cpu(),
|
242 |
+
# inputs["reshaped_input_sizes"].cpu(),
|
243 |
+
# )
|
244 |
+
|
245 |
+
# detections = sv.Detections.from_sam(sam_result=outputs)
|
246 |
+
|
247 |
+
# img = np.array(inp)
|
248 |
+
|
249 |
+
# sam_result = mask_generator.generate(img)
|
250 |
+
# detections = sv.Detections.from_sam(sam_result=sam_result)
|
251 |
+
|
252 |
+
# mask_annotator = sv.MaskAnnotator()
|
253 |
+
# label_annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER_OF_MASS)
|
254 |
+
|
255 |
+
# annotated_image = mask_annotator.annotate(
|
256 |
+
# scene=inp,
|
257 |
+
# detections=detections,
|
258 |
+
# )
|
259 |
+
# annotated_image = label_annotator.annotate(
|
260 |
+
# scene=annotated_image,
|
261 |
+
# detections=detections,
|
262 |
+
# )
|
263 |
+
|
264 |
+
# mask = masks[0]
|
265 |
+
# # mask = torch.ge(predicted_logits[0, 0, 0, :, :], 0).cpu().detach().numpy()
|
266 |
+
# masked_image_np = sample_image_np.copy().astype(np.uint8) * mask[:, :, None]
|
267 |
+
# Image.fromarray(masked_image_np).save(f"figs/examples/dogs_{model_name}_mask.png")
|
268 |
+
|
269 |
+
# mask_list = [masks[0][0][0].numpy(), masks[0][0][1].numpy(), masks[0][0][2].numpy()]
|
270 |
+
|
271 |
+
# overlayed_image = np.array(inp).copy()
|
272 |
+
# for i, mask in enumerate(mask_list, start=1):
|
273 |
+
|
274 |
+
# overlayed_image[:, :, 0] = np.where(mask == 1, 255, overlayed_image[:, :, 0])
|
275 |
+
# overlayed_image[:, :, 1] = np.where(mask == 1, 0, overlayed_image[:, :, 1])
|
276 |
+
# overlayed_image[:, :, 2] = np.where(mask == 1, 0, overlayed_image[:, :, 2])
|
277 |
+
|
278 |
+
# # # axes[i].imshow(overlayed_image)
|
279 |
+
# # # axes[i].set_title(f"Mask {i}")
|
280 |
+
|
281 |
+
# return Image.fromarray(overlayed_image)
|
282 |
+
# return annotated_image
|
283 |
+
|
284 |
+
|
285 |
+
def run() -> None:
|
286 |
+
demo = gr.Interface(
|
287 |
+
fn=predict,
|
288 |
+
inputs=gr.Image(type="pil"),
|
289 |
+
outputs=[
|
290 |
+
gr.Image(type="pil", label="Image"),
|
291 |
+
gr.Image(type="pil", label="Mask"),
|
292 |
+
],
|
293 |
+
)
|
294 |
+
|
295 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
296 |
+
|
297 |
+
|
298 |
+
if __name__ == "__main__":
|
299 |
+
run()
|
models/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*.pt
|
2 |
+
*.pth
|
requirements.txt
CHANGED
@@ -1,2 +1,9 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
requests
|
5 |
+
transformers
|
6 |
+
# tensorflow
|
7 |
+
# segment_anything
|
8 |
+
supervision
|
9 |
+
ultralytics
|