Spaces:
Runtime error
Runtime error
import string | |
import torch | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import gradio as gr | |
MODEL_NAME = "vinai/PhoWhisper-large" | |
BATCH_SIZE = 8 | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50 | |
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): | |
if seconds is not None: | |
milliseconds = round(seconds * 1000.0) | |
hours = milliseconds // 3_600_000 | |
milliseconds -= hours * 3_600_000 | |
minutes = milliseconds // 60_000 | |
milliseconds -= minutes * 60_000 | |
seconds = milliseconds // 1_000 | |
milliseconds -= seconds * 1_000 | |
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" | |
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" | |
else: | |
# we have a malformed timestamp so just return it as is | |
return seconds | |
def transcribe(file, og_text, return_timestamps): | |
outputs = pipe(file, batch_size=BATCH_SIZE, return_timestamps=return_timestamps) | |
text = outputs["text"] | |
if return_timestamps: | |
timestamps = outputs["chunks"] | |
timestamps = [ | |
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" | |
for chunk in timestamps | |
] | |
text = "\n".join(str(feature) for feature in timestamps) | |
text_nopunc = text.translate(str.maketrans('', '', string.punctuation)) | |
grade = '' | |
if text_nopunc.lower() == og_text.lower(): | |
grade = "good!" | |
else: | |
grade = "could use some work..." | |
return text, grade | |
demo = gr.Blocks() | |
mic_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type="filepath", optional=True), | |
gr.inputs.Textbox(label="Word/Phrase"), | |
gr.inputs.Checkbox(default=False, label="Return timestamps"), | |
], | |
outputs=[gr.Textbox(label="What I heard..."), gr.Textbox(label="Grade")], | |
layout="vertical", | |
theme="huggingface", | |
title="Vietnamese Pronounciation Checker", | |
description=( | |
"This space transcribes Vietnamese words, phrases, and sentences via microphone or audio files then compares the user's text input to what the language model hears.\n" | |
"You will then be given a PASS/FAIL grade to tell you if your spoken audio matches the text you entered.\n" | |
f"[{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) is a Vietnamese Speech-to-Text model and powers the analysis of the audio files.\n" | |
), | |
allow_flagging="never", | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"), | |
gr.inputs.Textbox(label="Word/Phrase"), | |
gr.inputs.Checkbox(default=False, label="Return timestamps"), | |
], | |
outputs=[gr.Textbox(label="What I heard..."), gr.Textbox(label="Grade")], | |
layout="vertical", | |
theme="huggingface", | |
title="Vietnamese Pronounciation Checker", | |
description=( | |
"This space transcribes Vietnamese words, phrases, and sentences via microphone or audio files then compares the user's text input to what the language model hears.\n" | |
"You will then be given a PASS/FAIL grade to tell you if your spoken audio matches the text you entered.\n" | |
f"[{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) is a Vietnamese Speech-to-Text model and powers the analysis of the audio files.\n" | |
), | |
examples=[ | |
["./example.flac", "transcribe", False], | |
["./example.flac", "transcribe", True], | |
], | |
cache_examples=True, | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([mic_transcribe, file_transcribe], ["Pronounce via Microphone", "Pronounce via Audio File"]) | |
demo.launch(enable_queue=True) |