slapula's picture
Update app.py
6034da8 verified
raw
history blame
4.12 kB
import string
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import gradio as gr
MODEL_NAME = "vinai/PhoWhisper-large"
BATCH_SIZE = 8
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
if seconds is not None:
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
else:
# we have a malformed timestamp so just return it as is
return seconds
def transcribe(file, og_text, return_timestamps):
outputs = pipe(file, batch_size=BATCH_SIZE, return_timestamps=return_timestamps)
text = outputs["text"]
if return_timestamps:
timestamps = outputs["chunks"]
timestamps = [
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
for chunk in timestamps
]
text = "\n".join(str(feature) for feature in timestamps)
text_nopunc = text.translate(str.maketrans('', '', string.punctuation))
grade = ''
if text_nopunc.lower() == og_text.lower():
grade = "good!"
else:
grade = "could use some work..."
return text, grade
demo = gr.Blocks()
mic_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Textbox(label="Word/Phrase"),
gr.inputs.Checkbox(default=False, label="Return timestamps"),
],
outputs=[gr.Textbox(label="What I heard..."), gr.Textbox(label="Grade")],
layout="vertical",
theme="huggingface",
title="Vietnamese Pronounciation Checker",
description=(
"This space transcribes Vietnamese words, phrases, and sentences via microphone or audio files then compares the user's text input to what the language model hears.\n"
"You will then be given a PASS/FAIL grade to tell you if your spoken audio matches the text you entered.\n"
f"[{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) is a Vietnamese Speech-to-Text model and powers the analysis of the audio files.\n"
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
gr.inputs.Textbox(label="Word/Phrase"),
gr.inputs.Checkbox(default=False, label="Return timestamps"),
],
outputs=[gr.Textbox(label="What I heard..."), gr.Textbox(label="Grade")],
layout="vertical",
theme="huggingface",
title="Vietnamese Pronounciation Checker",
description=(
"This space transcribes Vietnamese words, phrases, and sentences via microphone or audio files then compares the user's text input to what the language model hears.\n"
"You will then be given a PASS/FAIL grade to tell you if your spoken audio matches the text you entered.\n"
f"[{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) is a Vietnamese Speech-to-Text model and powers the analysis of the audio files.\n"
),
examples=[
["./example.flac", "transcribe", False],
["./example.flac", "transcribe", True],
],
cache_examples=True,
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mic_transcribe, file_transcribe], ["Pronounce via Microphone", "Pronounce via Audio File"])
demo.launch(enable_queue=True)