File size: 13,674 Bytes
8c92a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# Leveraging Content-based Features from Multiple Acoustic Models for Singing Voice Conversion
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2310.11160)
[![demo](https://img.shields.io/badge/SVC-Demo-red)](https://www.zhangxueyao.com/data/MultipleContentsSVC/index.html)
[![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Models-pink)](https://huggingface.co/amphion/singing_voice_conversion)
[![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Spaces-yellow)](https://huggingface.co/spaces/amphion/singing_voice_conversion)
[![openxlab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)](https://openxlab.org.cn/apps/detail/Amphion/singing_voice_conversion)
<br>
<div align="center">
<img src="../../../imgs/svc/MultipleContentsSVC.png" width="85%">
</div>
<br>
This is the official implementation of the paper "[Leveraging Diverse Semantic-based Audio Pretrained Models for Singing Voice Conversion](https://arxiv.org/abs/2310.11160)" (2024 IEEE Spoken Language Technology Workshop). Specially,
- The muptile content features are from [Whipser](https://github.com/wenet-e2e/wenet) and [ContentVec](https://github.com/auspicious3000/contentvec).
- The acoustic model is based on Bidirectional Non-Causal Dilated CNN (called `DiffWaveNetSVC` in Amphion), which is similar to [WaveNet](https://arxiv.org/pdf/1609.03499.pdf), [DiffWave](https://openreview.net/forum?id=a-xFK8Ymz5J), and [DiffSVC](https://ieeexplore.ieee.org/document/9688219).
- The vocoder is [BigVGAN](https://github.com/NVIDIA/BigVGAN) architecture and we fine-tuned it in over 120 hours singing voice data.
## A Little Taste Before Getting Started
Before you delve into the code, we suggest exploring the interactive DEMO we've provided for a comprehensive overview. There are several ways you can engage with it:
1. **Online DEMO**
| HuggingFace | OpenXLab |
| :----------------------------------------------------------: | :----------------------------------------------------------: |
| [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Spaces-yellow)](https://huggingface.co/spaces/amphion/singing_voice_conversion)<br />(Worldwide) | [![openxlab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)](https://openxlab.org.cn/apps/detail/Amphion/singing_voice_conversion)<br />(Suitable for Mainland China Users) |
2. **Run Local Gradio DEMO**
| Run with Docker | Duplicate Space with Private GPU |
| :----------------------------------------------------------: | :----------------------------------------------------------: |
| [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Spaces-yellow)](https://huggingface.co/spaces/amphion/singing_voice_conversion?docker=true) | [![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Spaces-yellow)](https://huggingface.co/spaces/amphion/singing_voice_conversion?duplicate=true) |
3. **Run with the Extended Colab**
You can check out [this repo](https://github.com/camenduru/singing-voice-conversion-colab) to run it with Colab. Thanks to [@camenduru](https://x.com/camenduru?s=20) and the community for their support!
## Usage Overview
To train a `DiffWaveNetSVC` model, there are four stages in total:
1. Data preparation
2. Features extraction
3. Training
4. Inference/conversion
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path:
> ```bash
> cd Amphion
> ```
## 1. Data Preparation
### Dataset Download
By default, we utilize the five datasets for training: M4Singer, Opencpop, OpenSinger, SVCC, and VCTK. How to download them is detailed [here](../../datasets/README.md).
### Configuration
Specify the dataset paths in `exp_config.json`. Note that you can change the `dataset` list to use your preferred datasets.
```json
"dataset": [
"m4singer",
"opencpop",
"opensinger",
"svcc",
"vctk"
],
"dataset_path": {
// TODO: Fill in your dataset path
"m4singer": "[M4Singer dataset path]",
"opencpop": "[Opencpop dataset path]",
"opensinger": "[OpenSinger dataset path]",
"svcc": "[SVCC dataset path]",
"vctk": "[VCTK dataset path]"
},
```
### Custom Dataset
We support custom dataset, see [here](../../datasets/README.md#customsvcdataset) for the file structure to follow.
After constructing proper file structure, specify your dataset name in `dataset` and its path in `dataset_path`, also add its name in `use_custom_dataset`:
```json
"dataset": [
"[Exisiting Dataset Name]",
//...
"[Your Custom Dataset Name]"
],
"dataset_path": {
"[Exisiting Dataset Name]": "[Exisiting Dataset Path]",
//...
"[Your Custom Dataset Name]": "[Your Custom Dataset Path]"
},
"use_custom_dataset": [
"[Your Custom Dataset Name]"
],
```
> **NOTE:** Custom dataset name does not have to be the same as the folder name. But it needs to satisfy these rules:
> 1. It can not be the same as the exisiting dataset name.
> 2. It can not contain any space or underline(`_`).
> 3. It must be a valid folder name for operating system.
>
> Some examples of valid custom dataset names are `mydataset`, `myDataset`, `my-dataset`, `mydataset1`, `my-dataset-1`, etc.
## 2. Features Extraction
### Content-based Pretrained Models Download
By default, we utilize the Whisper and ContentVec to extract content features. How to download them is detailed [here](../../../pretrained/README.md).
### Configuration
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config.json`:
```json
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/svc"
"log_dir": "ckpts/svc",
"preprocess": {
// TODO: Fill in the output data path. The default value is "Amphion/data"
"processed_dir": "data",
...
},
```
### Run
Run the `run.sh` as the preproces stage (set `--stage 1`).
```bash
sh egs/svc/MultipleContentsSVC/run.sh --stage 1
```
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`.
## 3. Training
### Configuration
We provide the default hyparameters in the `exp_config.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines.
```json
"train": {
"batch_size": 32,
...
"adamw": {
"lr": 2.0e-4
},
...
}
```
### Train From Scratch
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/svc/[YourExptName]`.
```bash
sh egs/svc/MultipleContentsSVC/run.sh --stage 2 --name [YourExptName]
```
### Train From Existing Source
We support training from existing source for various purposes. You can resume training the model from a checkpoint or fine-tune a model from another checkpoint.
Setting `--resume true`, the training will resume from the **latest checkpoint** by default. For example, if you want to resume training from the latest checkpoint in `Amphion/ckpts/svc/[YourExptName]/checkpoint`, run:
```bash
sh egs/svc/MultipleContentsSVC/run.sh --stage 2 --name [YourExptName] \
--resume true
```
You can choose a **specific checkpoint** for retraining by `--resume_from_ckpt_path` argument. For example, if you want to fine-tune from the checkpoint `Amphion/ckpts/svc/[YourExptName]/checkpoint/[SpecificCheckpoint]`, run:
```bash
sh egs/svc/MultipleContentsSVC/run.sh --stage 2 --name [YourExptName] \
--resume true
--resume_from_ckpt_path "Amphion/ckpts/svc/[YourExptName]/checkpoint/[SpecificCheckpoint]" \
```
If you want to **fine-tune from another checkpoint**, just use `--resume_type` and set it to `"finetune"`. For example, If you want to fine-tune from the checkpoint `Amphion/ckpts/svc/[AnotherExperiment]/checkpoint/[SpecificCheckpoint]`, run:
```bash
sh egs/svc/MultipleContentsSVC/run.sh --stage 2 --name [YourExptName] \
--resume true
--resume_from_ckpt_path "Amphion/ckpts/svc/[AnotherExperiment]/checkpoint/[SpecificCheckpoint]" \
--resume_type "finetune"
```
> **NOTE:** The `--resume_type` is set as `"resume"` in default. It's not necessary to specify it when resuming training.
>
> The difference between `"resume"` and `"finetune"` is that the `"finetune"` will **only** load the pretrained model weights from the checkpoint, while the `"resume"` will load all the training states (including optimizer, scheduler, etc.) from the checkpoint.
Here are some example scenarios to better understand how to use these arguments:
| Scenario | `--resume` | `--resume_from_ckpt_path` | `--resume_type` |
| ------ | -------- | ----------------------- | ------------- |
| You want to train from scratch | no | no | no |
| The machine breaks down during training and you want to resume training from the latest checkpoint | `true` | no | no |
| You find the latest model is overfitting and you want to re-train from the checkpoint before | `true` | `SpecificCheckpoint Path` | no |
| You want to fine-tune a model from another checkpoint | `true` | `SpecificCheckpoint Path` | `"finetune"` |
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`.
## 4. Inference/Conversion
### Pretrained Vocoder Download
We fine-tune the official BigVGAN pretrained model with over 120 hours singing voice data. The benifits of fine-tuning has been investigated in our paper (see this [demo page](https://www.zhangxueyao.com/data/MultipleContentsSVC/vocoder.html)). The final pretrained singing voice vocoder is released [here](../../../pretrained/README.md#amphion-singing-bigvgan) (called `Amphion Singing BigVGAN`).
### Run
For inference/conversion, you need to specify the following configurations when running `run.sh`:
| Parameters | Description | Example |
| --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `--infer_expt_dir` | The experimental directory which contains `checkpoint` | `Amphion/ckpts/svc/[YourExptName]` |
| `--infer_output_dir` | The output directory to save inferred audios. | `Amphion/ckpts/svc/[YourExptName]/result` |
| `--infer_source_file` or `--infer_source_audio_dir` | The inference source (can be a json file or a dir). | The `infer_source_file` could be `Amphion/data/[YourDataset]/test.json`, and the `infer_source_audio_dir` is a folder which includes several audio files (*.wav, *.mp3 or *.flac). |
| `--infer_target_speaker` | The target speaker you want to convert into. You can refer to `Amphion/ckpts/svc/[YourExptName]/singers.json` to choose a trained speaker. | For opencpop dataset, the speaker name would be `opencpop_female1`. |
| `--infer_key_shift` | How many semitones you want to transpose. | `"autoshfit"` (by default), `3`, `-3`, etc. |
For example, if you want to make `opencpop_female1` sing the songs in the `[Your Audios Folder]`, just run:
```bash
sh egs/svc/MultipleContentsSVC/run.sh --stage 3 --gpu "0" \
--infer_expt_dir ckpts/svc/[YourExptName] \
--infer_output_dir ckpts/svc/[YourExptName]/result \
--infer_source_audio_dir [Your Audios Folder] \
--infer_target_speaker "opencpop_female1" \
--infer_key_shift "autoshift"
```
## Citations
```bibtex
@inproceedings{zhang2024leveraging,
author={Zhang, Xueyao and Fang, Zihao and Gu, Yicheng and Chen, Haopeng and Zou, Lexiao and Zhang, Junan and Xue, Liumeng and Wu, Zhizheng},
title={Leveraging Diverse Semantic-based Audio Pretrained Models for Singing Voice Conversion},
booktitle={{IEEE} Spoken Language Technology Workshop, {SLT} 2024},
year={2024}
}
```
|