File size: 22,174 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
import torch
import torch.nn as nn
from typing import Tuple, Union, Optional, List
from modules.wenet_extractor.squeezeformer.subsampling import (
DepthwiseConv2dSubsampling4,
TimeReductionLayer1D,
TimeReductionLayer2D,
TimeReductionLayerStream,
)
from modules.wenet_extractor.squeezeformer.encoder_layer import (
SqueezeformerEncoderLayer,
)
from modules.wenet_extractor.transformer.embedding import RelPositionalEncoding
from modules.wenet_extractor.transformer.attention import MultiHeadedAttention
from modules.wenet_extractor.squeezeformer.attention import (
RelPositionMultiHeadedAttention,
)
from modules.wenet_extractor.squeezeformer.positionwise_feed_forward import (
PositionwiseFeedForward,
)
from modules.wenet_extractor.squeezeformer.convolution import ConvolutionModule
from modules.wenet_extractor.utils.mask import make_pad_mask, add_optional_chunk_mask
from modules.wenet_extractor.utils.common import get_activation
class SqueezeformerEncoder(nn.Module):
def __init__(
self,
input_size: int = 80,
encoder_dim: int = 256,
output_size: int = 256,
attention_heads: int = 4,
num_blocks: int = 12,
reduce_idx: Optional[Union[int, List[int]]] = 5,
recover_idx: Optional[Union[int, List[int]]] = 11,
feed_forward_expansion_factor: int = 4,
dw_stride: bool = False,
input_dropout_rate: float = 0.1,
pos_enc_layer_type: str = "rel_pos",
time_reduction_layer_type: str = "conv1d",
do_rel_shift: bool = True,
feed_forward_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.1,
cnn_module_kernel: int = 31,
cnn_norm_type: str = "batch_norm",
dropout: float = 0.1,
causal: bool = False,
adaptive_scale: bool = True,
activation_type: str = "swish",
init_weights: bool = True,
global_cmvn: torch.nn.Module = None,
normalize_before: bool = False,
use_dynamic_chunk: bool = False,
concat_after: bool = False,
static_chunk_size: int = 0,
use_dynamic_left_chunk: bool = False,
):
"""Construct SqueezeformerEncoder
Args:
input_size to use_dynamic_chunk, see in Transformer BaseEncoder.
encoder_dim (int): The hidden dimension of encoder layer.
output_size (int): The output dimension of final projection layer.
attention_heads (int): Num of attention head in attention module.
num_blocks (int): Num of encoder layers.
reduce_idx Optional[Union[int, List[int]]]:
reduce layer index, from 40ms to 80ms per frame.
recover_idx Optional[Union[int, List[int]]]:
recover layer index, from 80ms to 40ms per frame.
feed_forward_expansion_factor (int): Enlarge coefficient of FFN.
dw_stride (bool): Whether do depthwise convolution
on subsampling module.
input_dropout_rate (float): Dropout rate of input projection layer.
pos_enc_layer_type (str): Self attention type.
time_reduction_layer_type (str): Conv1d or Conv2d reduction layer.
do_rel_shift (bool): Whether to do relative shift
operation on rel-attention module.
cnn_module_kernel (int): Kernel size of CNN module.
activation_type (str): Encoder activation function type.
use_cnn_module (bool): Whether to use convolution module.
cnn_module_kernel (int): Kernel size of convolution module.
adaptive_scale (bool): Whether to use adaptive scale.
init_weights (bool): Whether to initialize weights.
causal (bool): whether to use causal convolution or not.
"""
super(SqueezeformerEncoder, self).__init__()
self.global_cmvn = global_cmvn
self.reduce_idx: Optional[Union[int, List[int]]] = (
[reduce_idx] if type(reduce_idx) == int else reduce_idx
)
self.recover_idx: Optional[Union[int, List[int]]] = (
[recover_idx] if type(recover_idx) == int else recover_idx
)
self.check_ascending_list()
if reduce_idx is None:
self.time_reduce = None
else:
if recover_idx is None:
self.time_reduce = "normal" # no recovery at the end
else:
self.time_reduce = "recover" # recovery at the end
assert len(self.reduce_idx) == len(self.recover_idx)
self.reduce_stride = 2
self._output_size = output_size
self.normalize_before = normalize_before
self.static_chunk_size = static_chunk_size
self.use_dynamic_chunk = use_dynamic_chunk
self.use_dynamic_left_chunk = use_dynamic_left_chunk
self.pos_enc_layer_type = pos_enc_layer_type
activation = get_activation(activation_type)
# self-attention module definition
if pos_enc_layer_type != "rel_pos":
encoder_selfattn_layer = MultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
)
else:
encoder_selfattn_layer = RelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
encoder_dim,
attention_dropout_rate,
do_rel_shift,
adaptive_scale,
init_weights,
)
# feed-forward module definition
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
encoder_dim,
encoder_dim * feed_forward_expansion_factor,
feed_forward_dropout_rate,
activation,
adaptive_scale,
init_weights,
)
# convolution module definition
convolution_layer = ConvolutionModule
convolution_layer_args = (
encoder_dim,
cnn_module_kernel,
activation,
cnn_norm_type,
causal,
True,
adaptive_scale,
init_weights,
)
self.embed = DepthwiseConv2dSubsampling4(
1,
encoder_dim,
RelPositionalEncoding(encoder_dim, dropout_rate=0.1),
dw_stride,
input_size,
input_dropout_rate,
init_weights,
)
self.preln = nn.LayerNorm(encoder_dim)
self.encoders = torch.nn.ModuleList(
[
SqueezeformerEncoderLayer(
encoder_dim,
encoder_selfattn_layer(*encoder_selfattn_layer_args),
positionwise_layer(*positionwise_layer_args),
convolution_layer(*convolution_layer_args),
positionwise_layer(*positionwise_layer_args),
normalize_before,
dropout,
concat_after,
)
for _ in range(num_blocks)
]
)
if time_reduction_layer_type == "conv1d":
time_reduction_layer = TimeReductionLayer1D
time_reduction_layer_args = {
"channel": encoder_dim,
"out_dim": encoder_dim,
}
elif time_reduction_layer_type == "stream":
time_reduction_layer = TimeReductionLayerStream
time_reduction_layer_args = {
"channel": encoder_dim,
"out_dim": encoder_dim,
}
else:
time_reduction_layer = TimeReductionLayer2D
time_reduction_layer_args = {"encoder_dim": encoder_dim}
self.time_reduction_layer = time_reduction_layer(**time_reduction_layer_args)
self.time_recover_layer = nn.Linear(encoder_dim, encoder_dim)
self.final_proj = None
if output_size != encoder_dim:
self.final_proj = nn.Linear(encoder_dim, output_size)
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs: torch.Tensor,
xs_lens: torch.Tensor,
decoding_chunk_size: int = 0,
num_decoding_left_chunks: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
T = xs.size(1)
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
if self.global_cmvn is not None:
xs = self.global_cmvn(xs)
xs, pos_emb, masks = self.embed(xs, masks)
mask_pad = masks # (B, 1, T/subsample_rate)
chunk_masks = add_optional_chunk_mask(
xs,
masks,
self.use_dynamic_chunk,
self.use_dynamic_left_chunk,
decoding_chunk_size,
self.static_chunk_size,
num_decoding_left_chunks,
)
xs_lens = mask_pad.squeeze(1).sum(1)
xs = self.preln(xs)
recover_activations: List[
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
] = []
index = 0
for i, layer in enumerate(self.encoders):
if self.reduce_idx is not None:
if self.time_reduce is not None and i in self.reduce_idx:
recover_activations.append((xs, chunk_masks, pos_emb, mask_pad))
xs, xs_lens, chunk_masks, mask_pad = self.time_reduction_layer(
xs, xs_lens, chunk_masks, mask_pad
)
pos_emb = pos_emb[:, ::2, :]
index += 1
if self.recover_idx is not None:
if self.time_reduce == "recover" and i in self.recover_idx:
index -= 1
(
recover_tensor,
recover_chunk_masks,
recover_pos_emb,
recover_mask_pad,
) = recover_activations[index]
# recover output length for ctc decode
xs = xs.unsqueeze(2).repeat(1, 1, 2, 1).flatten(1, 2)
xs = self.time_recover_layer(xs)
recoverd_t = recover_tensor.size(1)
xs = recover_tensor + xs[:, :recoverd_t, :].contiguous()
chunk_masks = recover_chunk_masks
pos_emb = recover_pos_emb
mask_pad = recover_mask_pad
xs = xs.masked_fill(~mask_pad[:, 0, :].unsqueeze(-1), 0.0)
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
if self.final_proj is not None:
xs = self.final_proj(xs)
return xs, masks
def check_ascending_list(self):
if self.reduce_idx is not None:
assert self.reduce_idx == sorted(
self.reduce_idx
), "reduce_idx should be int or ascending list"
if self.recover_idx is not None:
assert self.recover_idx == sorted(
self.recover_idx
), "recover_idx should be int or ascending list"
def calculate_downsampling_factor(self, i: int) -> int:
if self.reduce_idx is None:
return 1
else:
reduce_exp, recover_exp = 0, 0
for exp, rd_idx in enumerate(self.reduce_idx):
if i >= rd_idx:
reduce_exp = exp + 1
if self.recover_idx is not None:
for exp, rc_idx in enumerate(self.recover_idx):
if i >= rc_idx:
recover_exp = exp + 1
return int(2 ** (reduce_exp - recover_exp))
def forward_chunk(
self,
xs: torch.Tensor,
offset: int,
required_cache_size: int,
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
att_mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
""" Forward just one chunk
Args:
xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
where `time == (chunk_size - 1) * subsample_rate + \
subsample.right_context + 1`
offset (int): current offset in encoder output time stamp
required_cache_size (int): cache size required for next chunk
compuation
>=0: actual cache size
<0: means all history cache is required
att_cache (torch.Tensor): cache tensor for KEY & VALUE in
transformer/conformer attention, with shape
(elayers, head, cache_t1, d_k * 2), where
`head * d_k == hidden-dim` and
`cache_t1 == chunk_size * num_decoding_left_chunks`.
cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
(elayers, b=1, hidden-dim, cache_t2), where
`cache_t2 == cnn.lorder - 1`
Returns:
torch.Tensor: output of current input xs,
with shape (b=1, chunk_size, hidden-dim).
torch.Tensor: new attention cache required for next chunk, with
dynamic shape (elayers, head, ?, d_k * 2)
depending on required_cache_size.
torch.Tensor: new conformer cnn cache required for next chunk, with
same shape as the original cnn_cache.
"""
assert xs.size(0) == 1
# tmp_masks is just for interface compatibility
tmp_masks = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool)
tmp_masks = tmp_masks.unsqueeze(1)
if self.global_cmvn is not None:
xs = self.global_cmvn(xs)
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
# NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
elayers, cache_t1 = att_cache.size(0), att_cache.size(2)
chunk_size = xs.size(1)
attention_key_size = cache_t1 + chunk_size
pos_emb = self.embed.position_encoding(
offset=offset - cache_t1, size=attention_key_size
)
if required_cache_size < 0:
next_cache_start = 0
elif required_cache_size == 0:
next_cache_start = attention_key_size
else:
next_cache_start = max(attention_key_size - required_cache_size, 0)
r_att_cache = []
r_cnn_cache = []
mask_pad = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool)
mask_pad = mask_pad.unsqueeze(1)
max_att_len: int = 0
recover_activations: List[
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
] = []
index = 0
xs_lens = torch.tensor([xs.size(1)], device=xs.device, dtype=torch.int)
xs = self.preln(xs)
for i, layer in enumerate(self.encoders):
# NOTE(xcsong): Before layer.forward
# shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
# shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
if self.reduce_idx is not None:
if self.time_reduce is not None and i in self.reduce_idx:
recover_activations.append((xs, att_mask, pos_emb, mask_pad))
xs, xs_lens, att_mask, mask_pad = self.time_reduction_layer(
xs, xs_lens, att_mask, mask_pad
)
pos_emb = pos_emb[:, ::2, :]
index += 1
if self.recover_idx is not None:
if self.time_reduce == "recover" and i in self.recover_idx:
index -= 1
(
recover_tensor,
recover_att_mask,
recover_pos_emb,
recover_mask_pad,
) = recover_activations[index]
# recover output length for ctc decode
xs = xs.unsqueeze(2).repeat(1, 1, 2, 1).flatten(1, 2)
xs = self.time_recover_layer(xs)
recoverd_t = recover_tensor.size(1)
xs = recover_tensor + xs[:, :recoverd_t, :].contiguous()
att_mask = recover_att_mask
pos_emb = recover_pos_emb
mask_pad = recover_mask_pad
if att_mask.size(1) != 0:
xs = xs.masked_fill(~att_mask[:, 0, :].unsqueeze(-1), 0.0)
factor = self.calculate_downsampling_factor(i)
xs, _, new_att_cache, new_cnn_cache = layer(
xs,
att_mask,
pos_emb,
att_cache=(
att_cache[i : i + 1][:, :, ::factor, :][
:, :, : pos_emb.size(1) - xs.size(1), :
]
if elayers > 0
else att_cache[:, :, ::factor, :]
),
cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache,
)
# NOTE(xcsong): After layer.forward
# shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
# shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
cached_att = new_att_cache[:, :, next_cache_start // factor :, :]
cached_cnn = new_cnn_cache.unsqueeze(0)
cached_att = (
cached_att.unsqueeze(3).repeat(1, 1, 1, factor, 1).flatten(2, 3)
)
if i == 0:
# record length for the first block as max length
max_att_len = cached_att.size(2)
r_att_cache.append(cached_att[:, :, :max_att_len, :])
r_cnn_cache.append(cached_cnn)
# NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
# ? may be larger than cache_t1, it depends on required_cache_size
r_att_cache = torch.cat(r_att_cache, dim=0)
# NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
r_cnn_cache = torch.cat(r_cnn_cache, dim=0)
if self.final_proj is not None:
xs = self.final_proj(xs)
return (xs, r_att_cache, r_cnn_cache)
def forward_chunk_by_chunk(
self,
xs: torch.Tensor,
decoding_chunk_size: int,
num_decoding_left_chunks: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward input chunk by chunk with chunk_size like a streaming
fashion
Here we should pay special attention to computation cache in the
streaming style forward chunk by chunk. Three things should be taken
into account for computation in the current network:
1. transformer/conformer encoder layers output cache
2. convolution in conformer
3. convolution in subsampling
However, we don't implement subsampling cache for:
1. We can control subsampling module to output the right result by
overlapping input instead of cache left context, even though it
wastes some computation, but subsampling only takes a very
small fraction of computation in the whole model.
2. Typically, there are several covolution layers with subsampling
in subsampling module, it is tricky and complicated to do cache
with different convolution layers with different subsampling
rate.
3. Currently, nn.Sequential is used to stack all the convolution
layers in subsampling, we need to rewrite it to make it work
with cache, which is not prefered.
Args:
xs (torch.Tensor): (1, max_len, dim)
chunk_size (int): decoding chunk size
"""
assert decoding_chunk_size > 0
# The model is trained by static or dynamic chunk
assert self.static_chunk_size > 0 or self.use_dynamic_chunk
subsampling = self.embed.subsampling_rate
context = self.embed.right_context + 1 # Add current frame
stride = subsampling * decoding_chunk_size
decoding_window = (decoding_chunk_size - 1) * subsampling + context
num_frames = xs.size(1)
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0), device=xs.device)
outputs = []
offset = 0
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
# Feed forward overlap input step by step
for cur in range(0, num_frames - context + 1, stride):
end = min(cur + decoding_window, num_frames)
chunk_xs = xs[:, cur:end, :]
(y, att_cache, cnn_cache) = self.forward_chunk(
chunk_xs, offset, required_cache_size, att_cache, cnn_cache
)
outputs.append(y)
offset += y.size(1)
ys = torch.cat(outputs, 1)
masks = torch.ones((1, 1, ys.size(1)), device=ys.device, dtype=torch.bool)
return ys, masks
|