File size: 3,512 Bytes
8c92a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torchcrepe
import math
import librosa
import torch
import numpy as np
def extract_f0_periodicity_rmse(
audio_ref,
audio_deg,
hop_length=256,
**kwargs,
):
"""Compute f0 periodicity Root Mean Square Error (RMSE) between the predicted and the ground truth audio.
audio_ref: path to the ground truth audio.
audio_deg: path to the predicted audio.
fs: sampling rate.
hop_length: hop length.
method: "dtw" will use dtw algorithm to align the length of the ground truth and predicted audio.
"cut" will cut both audios into a same length according to the one with the shorter length.
"""
# Load hyperparameters
kwargs = kwargs["kwargs"]
fs = kwargs["fs"]
method = kwargs["method"]
# Load audio
if fs != None:
audio_ref, _ = librosa.load(audio_ref, sr=fs)
audio_deg, _ = librosa.load(audio_deg, sr=fs)
else:
audio_ref, fs = librosa.load(audio_ref)
audio_deg, fs = librosa.load(audio_deg)
# Convert to torch
audio_ref = torch.from_numpy(audio_ref).unsqueeze(0)
audio_deg = torch.from_numpy(audio_deg).unsqueeze(0)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
# Get periodicity
_, periodicity_ref = torchcrepe.predict(
audio_ref,
sample_rate=fs,
hop_length=hop_length,
fmin=0,
fmax=1500,
model="full",
return_periodicity=True,
device=device,
)
_, periodicity_deg = torchcrepe.predict(
audio_deg,
sample_rate=fs,
hop_length=hop_length,
fmin=0,
fmax=1500,
model="full",
return_periodicity=True,
device=device,
)
# Cut silence
periodicity_ref = (
torchcrepe.threshold.Silence()(
periodicity_ref,
audio_ref,
fs,
hop_length=hop_length,
)
.squeeze(0)
.numpy()
)
periodicity_deg = (
torchcrepe.threshold.Silence()(
periodicity_deg,
audio_deg,
fs,
hop_length=hop_length,
)
.squeeze(0)
.numpy()
)
# Avoid silence audio
min_length = min(len(periodicity_ref), len(periodicity_deg))
if min_length <= 1:
return 0
# Periodicity length alignment
if method == "cut":
length = min(len(periodicity_ref), len(periodicity_deg))
periodicity_ref = periodicity_ref[:length]
periodicity_deg = periodicity_deg[:length]
elif method == "dtw":
_, wp = librosa.sequence.dtw(periodicity_ref, periodicity_deg, backtrack=True)
periodicity_ref_new = []
periodicity_deg_new = []
for i in range(wp.shape[0]):
ref_index = wp[i][0]
deg_index = wp[i][1]
periodicity_ref_new.append(periodicity_ref[ref_index])
periodicity_deg_new.append(periodicity_deg[deg_index])
periodicity_ref = np.array(periodicity_ref_new)
periodicity_deg = np.array(periodicity_deg_new)
assert len(periodicity_ref) == len(periodicity_deg)
# Compute RMSE
periodicity_mse = np.square(np.subtract(periodicity_ref, periodicity_deg)).mean()
periodicity_rmse = math.sqrt(periodicity_mse)
return periodicity_rmse
|