File size: 7,931 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# This code is adopted from META's Encodec under MIT License
# https://github.com/facebookresearch/encodec
"""MS-STFT discriminator, provided here for reference."""
import typing as tp
import torchaudio
import torch
from torch import nn
from einops import rearrange
from modules.vocoder_blocks import *
FeatureMapType = tp.List[torch.Tensor]
LogitsType = torch.Tensor
DiscriminatorOutput = tp.Tuple[tp.List[LogitsType], tp.List[FeatureMapType]]
def get_2d_padding(
kernel_size: tp.Tuple[int, int], dilation: tp.Tuple[int, int] = (1, 1)
):
return (
((kernel_size[0] - 1) * dilation[0]) // 2,
((kernel_size[1] - 1) * dilation[1]) // 2,
)
class DiscriminatorSTFT(nn.Module):
"""STFT sub-discriminator.
Args:
filters (int): Number of filters in convolutions
in_channels (int): Number of input channels. Default: 1
out_channels (int): Number of output channels. Default: 1
n_fft (int): Size of FFT for each scale. Default: 1024
hop_length (int): Length of hop between STFT windows for each scale. Default: 256
kernel_size (tuple of int): Inner Conv2d kernel sizes. Default: ``(3, 9)``
stride (tuple of int): Inner Conv2d strides. Default: ``(1, 2)``
dilations (list of int): Inner Conv2d dilation on the time dimension. Default: ``[1, 2, 4]``
win_length (int): Window size for each scale. Default: 1024
normalized (bool): Whether to normalize by magnitude after stft. Default: True
norm (str): Normalization method. Default: `'weight_norm'`
activation (str): Activation function. Default: `'LeakyReLU'`
activation_params (dict): Parameters to provide to the activation function.
growth (int): Growth factor for the filters. Default: 1
"""
def __init__(
self,
filters: int,
in_channels: int = 1,
out_channels: int = 1,
n_fft: int = 1024,
hop_length: int = 256,
win_length: int = 1024,
max_filters: int = 1024,
filters_scale: int = 1,
kernel_size: tp.Tuple[int, int] = (3, 9),
dilations: tp.List = [1, 2, 4],
stride: tp.Tuple[int, int] = (1, 2),
normalized: bool = True,
norm: str = "weight_norm",
activation: str = "LeakyReLU",
activation_params: dict = {"negative_slope": 0.2},
):
super().__init__()
assert len(kernel_size) == 2
assert len(stride) == 2
self.filters = filters
self.in_channels = in_channels
self.out_channels = out_channels
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.normalized = normalized
self.activation = getattr(torch.nn, activation)(**activation_params)
self.spec_transform = torchaudio.transforms.Spectrogram(
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window_fn=torch.hann_window,
normalized=self.normalized,
center=False,
pad_mode=None,
power=None,
)
spec_channels = 2 * self.in_channels
self.convs = nn.ModuleList()
self.convs.append(
NormConv2d(
spec_channels,
self.filters,
kernel_size=kernel_size,
padding=get_2d_padding(kernel_size),
)
)
in_chs = min(filters_scale * self.filters, max_filters)
for i, dilation in enumerate(dilations):
out_chs = min((filters_scale ** (i + 1)) * self.filters, max_filters)
self.convs.append(
NormConv2d(
in_chs,
out_chs,
kernel_size=kernel_size,
stride=stride,
dilation=(dilation, 1),
padding=get_2d_padding(kernel_size, (dilation, 1)),
norm=norm,
)
)
in_chs = out_chs
out_chs = min(
(filters_scale ** (len(dilations) + 1)) * self.filters, max_filters
)
self.convs.append(
NormConv2d(
in_chs,
out_chs,
kernel_size=(kernel_size[0], kernel_size[0]),
padding=get_2d_padding((kernel_size[0], kernel_size[0])),
norm=norm,
)
)
self.conv_post = NormConv2d(
out_chs,
self.out_channels,
kernel_size=(kernel_size[0], kernel_size[0]),
padding=get_2d_padding((kernel_size[0], kernel_size[0])),
norm=norm,
)
def forward(self, x: torch.Tensor):
"""Discriminator STFT Module is the sub module of MultiScaleSTFTDiscriminator.
Args:
x (torch.Tensor): input tensor of shape [B, 1, Time]
Returns:
z: z is the output of the last convolutional layer of shape
fmap: fmap is the list of feature maps of every convolutional layer of shape
"""
fmap = []
z = self.spec_transform(x) # [B, 2, Freq, Frames, 2]
z = torch.cat([z.real, z.imag], dim=1)
z = rearrange(z, "b c w t -> b c t w")
for i, layer in enumerate(self.convs):
z = layer(z)
z = self.activation(z)
fmap.append(z)
z = self.conv_post(z)
return z, fmap
class MultiScaleSTFTDiscriminator(nn.Module):
"""Multi-Scale STFT (MS-STFT) discriminator.
Args:
filters (int): Number of filters in convolutions
in_channels (int): Number of input channels. Default: 1
out_channels (int): Number of output channels. Default: 1
n_ffts (Sequence[int]): Size of FFT for each scale
hop_lengths (Sequence[int]): Length of hop between STFT windows for each scale
win_lengths (Sequence[int]): Window size for each scale
**kwargs: additional args for STFTDiscriminator
"""
def __init__(
self,
cfg,
in_channels: int = 1,
out_channels: int = 1,
n_ffts: tp.List[int] = [1024, 2048, 512],
hop_lengths: tp.List[int] = [256, 512, 256],
win_lengths: tp.List[int] = [1024, 2048, 512],
**kwargs,
):
self.cfg = cfg
super().__init__()
assert len(n_ffts) == len(hop_lengths) == len(win_lengths)
self.discriminators = nn.ModuleList(
[
DiscriminatorSTFT(
filters=self.cfg.model.msstftd.filters,
in_channels=in_channels,
out_channels=out_channels,
n_fft=n_ffts[i],
win_length=win_lengths[i],
hop_length=hop_lengths[i],
**kwargs,
)
for i in range(len(n_ffts))
]
)
self.num_discriminators = len(self.discriminators)
def forward(self, y, y_hat) -> DiscriminatorOutput:
"""Multi-Scale STFT (MS-STFT) discriminator.
Args:
x (torch.Tensor): input waveform
Returns:
logits: list of every discriminator's output
fmaps: list of every discriminator's feature maps,
each feature maps is a list of Discriminator STFT's every layer
"""
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for disc in self.discriminators:
y_d_r, fmap_r = disc(y)
y_d_g, fmap_g = disc(y_hat)
y_d_rs.append(y_d_r)
fmap_rs.append(fmap_r)
y_d_gs.append(y_d_g)
fmap_gs.append(fmap_g)
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|