|
|
|
|
|
|
|
|
|
|
|
from modules.dac.nn.quantize import ResidualVectorQuantize |
|
from torch import nn |
|
from .wavenet import WN |
|
from .style_encoder import StyleEncoder |
|
from .gradient_reversal import GradientReversal |
|
import torch |
|
import torchaudio |
|
import torchaudio.functional as audio_F |
|
import numpy as np |
|
from ..alias_free_torch import * |
|
from torch.nn.utils import weight_norm |
|
from torch import nn, sin, pow |
|
from einops.layers.torch import Rearrange |
|
from modules.dac.model.encodec import SConv1d |
|
|
|
|
|
def init_weights(m): |
|
if isinstance(m, nn.Conv1d): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
def WNConv1d(*args, **kwargs): |
|
return weight_norm(nn.Conv1d(*args, **kwargs)) |
|
|
|
|
|
def WNConvTranspose1d(*args, **kwargs): |
|
return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) |
|
|
|
|
|
class SnakeBeta(nn.Module): |
|
""" |
|
A modified Snake function which uses separate parameters for the magnitude of the periodic components |
|
Shape: |
|
- Input: (B, C, T) |
|
- Output: (B, C, T), same shape as the input |
|
Parameters: |
|
- alpha - trainable parameter that controls frequency |
|
- beta - trainable parameter that controls magnitude |
|
References: |
|
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: |
|
https://arxiv.org/abs/2006.08195 |
|
Examples: |
|
>>> a1 = snakebeta(256) |
|
>>> x = torch.randn(256) |
|
>>> x = a1(x) |
|
""" |
|
|
|
def __init__( |
|
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False |
|
): |
|
""" |
|
Initialization. |
|
INPUT: |
|
- in_features: shape of the input |
|
- alpha - trainable parameter that controls frequency |
|
- beta - trainable parameter that controls magnitude |
|
alpha is initialized to 1 by default, higher values = higher-frequency. |
|
beta is initialized to 1 by default, higher values = higher-magnitude. |
|
alpha will be trained along with the rest of your model. |
|
""" |
|
super(SnakeBeta, self).__init__() |
|
self.in_features = in_features |
|
|
|
|
|
self.alpha_logscale = alpha_logscale |
|
if self.alpha_logscale: |
|
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha) |
|
self.beta = nn.Parameter(torch.zeros(in_features) * alpha) |
|
else: |
|
self.alpha = nn.Parameter(torch.ones(in_features) * alpha) |
|
self.beta = nn.Parameter(torch.ones(in_features) * alpha) |
|
|
|
self.alpha.requires_grad = alpha_trainable |
|
self.beta.requires_grad = alpha_trainable |
|
|
|
self.no_div_by_zero = 0.000000001 |
|
|
|
def forward(self, x): |
|
""" |
|
Forward pass of the function. |
|
Applies the function to the input elementwise. |
|
SnakeBeta := x + 1/b * sin^2 (xa) |
|
""" |
|
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) |
|
beta = self.beta.unsqueeze(0).unsqueeze(-1) |
|
if self.alpha_logscale: |
|
alpha = torch.exp(alpha) |
|
beta = torch.exp(beta) |
|
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2) |
|
|
|
return x |
|
|
|
|
|
class ResidualUnit(nn.Module): |
|
def __init__(self, dim: int = 16, dilation: int = 1): |
|
super().__init__() |
|
pad = ((7 - 1) * dilation) // 2 |
|
self.block = nn.Sequential( |
|
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), |
|
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad), |
|
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), |
|
WNConv1d(dim, dim, kernel_size=1), |
|
) |
|
|
|
def forward(self, x): |
|
return x + self.block(x) |
|
|
|
|
|
class CNNLSTM(nn.Module): |
|
def __init__(self, indim, outdim, head, global_pred=False): |
|
super().__init__() |
|
self.global_pred = global_pred |
|
self.model = nn.Sequential( |
|
ResidualUnit(indim, dilation=1), |
|
ResidualUnit(indim, dilation=2), |
|
ResidualUnit(indim, dilation=3), |
|
Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)), |
|
Rearrange("b c t -> b t c"), |
|
) |
|
self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)]) |
|
|
|
def forward(self, x): |
|
|
|
x = self.model(x) |
|
if self.global_pred: |
|
x = torch.mean(x, dim=1, keepdim=False) |
|
outs = [head(x) for head in self.heads] |
|
return outs |
|
|
|
|
|
def sequence_mask(length, max_length=None): |
|
if max_length is None: |
|
max_length = length.max() |
|
x = torch.arange(max_length, dtype=length.dtype, device=length.device) |
|
return x.unsqueeze(0) < length.unsqueeze(1) |
|
|
|
|
|
class MFCC(nn.Module): |
|
def __init__(self, n_mfcc=40, n_mels=80): |
|
super(MFCC, self).__init__() |
|
self.n_mfcc = n_mfcc |
|
self.n_mels = n_mels |
|
self.norm = "ortho" |
|
dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm) |
|
self.register_buffer("dct_mat", dct_mat) |
|
|
|
def forward(self, mel_specgram): |
|
if len(mel_specgram.shape) == 2: |
|
mel_specgram = mel_specgram.unsqueeze(0) |
|
unsqueezed = True |
|
else: |
|
unsqueezed = False |
|
|
|
|
|
mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2) |
|
|
|
|
|
if unsqueezed: |
|
mfcc = mfcc.squeeze(0) |
|
return mfcc |
|
|
|
|
|
class FAquantizer(nn.Module): |
|
def __init__( |
|
self, |
|
in_dim=1024, |
|
n_p_codebooks=1, |
|
n_c_codebooks=2, |
|
n_t_codebooks=2, |
|
n_r_codebooks=3, |
|
codebook_size=1024, |
|
codebook_dim=8, |
|
quantizer_dropout=0.5, |
|
causal=False, |
|
separate_prosody_encoder=False, |
|
timbre_norm=False, |
|
): |
|
super(FAquantizer, self).__init__() |
|
conv1d_type = SConv1d |
|
self.prosody_quantizer = ResidualVectorQuantize( |
|
input_dim=in_dim, |
|
n_codebooks=n_p_codebooks, |
|
codebook_size=codebook_size, |
|
codebook_dim=codebook_dim, |
|
quantizer_dropout=quantizer_dropout, |
|
) |
|
|
|
self.content_quantizer = ResidualVectorQuantize( |
|
input_dim=in_dim, |
|
n_codebooks=n_c_codebooks, |
|
codebook_size=codebook_size, |
|
codebook_dim=codebook_dim, |
|
quantizer_dropout=quantizer_dropout, |
|
) |
|
|
|
if not timbre_norm: |
|
self.timbre_quantizer = ResidualVectorQuantize( |
|
input_dim=in_dim, |
|
n_codebooks=n_t_codebooks, |
|
codebook_size=codebook_size, |
|
codebook_dim=codebook_dim, |
|
quantizer_dropout=quantizer_dropout, |
|
) |
|
else: |
|
self.timbre_encoder = StyleEncoder( |
|
in_dim=80, hidden_dim=512, out_dim=in_dim |
|
) |
|
self.timbre_linear = nn.Linear(1024, 1024 * 2) |
|
self.timbre_linear.bias.data[:1024] = 1 |
|
self.timbre_linear.bias.data[1024:] = 0 |
|
self.timbre_norm = nn.LayerNorm(1024, elementwise_affine=False) |
|
|
|
self.residual_quantizer = ResidualVectorQuantize( |
|
input_dim=in_dim, |
|
n_codebooks=n_r_codebooks, |
|
codebook_size=codebook_size, |
|
codebook_dim=codebook_dim, |
|
quantizer_dropout=quantizer_dropout, |
|
) |
|
|
|
if separate_prosody_encoder: |
|
self.melspec_linear = conv1d_type( |
|
in_channels=20, out_channels=256, kernel_size=1, causal=causal |
|
) |
|
self.melspec_encoder = WN( |
|
hidden_channels=256, |
|
kernel_size=5, |
|
dilation_rate=1, |
|
n_layers=8, |
|
gin_channels=0, |
|
p_dropout=0.2, |
|
causal=causal, |
|
) |
|
self.melspec_linear2 = conv1d_type( |
|
in_channels=256, out_channels=1024, kernel_size=1, causal=causal |
|
) |
|
else: |
|
pass |
|
self.separate_prosody_encoder = separate_prosody_encoder |
|
|
|
self.prob_random_mask_residual = 0.75 |
|
|
|
SPECT_PARAMS = { |
|
"n_fft": 2048, |
|
"win_length": 1200, |
|
"hop_length": 300, |
|
} |
|
MEL_PARAMS = { |
|
"n_mels": 80, |
|
} |
|
|
|
self.to_mel = torchaudio.transforms.MelSpectrogram( |
|
n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS |
|
) |
|
self.mel_mean, self.mel_std = -4, 4 |
|
self.frame_rate = 24000 / 300 |
|
self.hop_length = 300 |
|
|
|
self.is_timbre_norm = timbre_norm |
|
if timbre_norm: |
|
self.forward = self.forward_v2 |
|
|
|
def preprocess(self, wave_tensor, n_bins=20): |
|
mel_tensor = self.to_mel(wave_tensor.squeeze(1)) |
|
mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std |
|
return mel_tensor[:, :n_bins, : int(wave_tensor.size(-1) / self.hop_length)] |
|
|
|
@torch.no_grad() |
|
def decode(self, codes): |
|
code_c, code_p, code_t = codes.split([1, 1, 2], dim=1) |
|
|
|
z_c = self.content_quantizer.from_codes(code_c)[0] |
|
z_p = self.prosody_quantizer.from_codes(code_p)[0] |
|
z_t = self.timbre_quantizer.from_codes(code_t)[0] |
|
|
|
z = z_c + z_p + z_t |
|
|
|
return z, [z_c, z_p, z_t] |
|
|
|
@torch.no_grad() |
|
def encode(self, x, wave_segments, n_c=1): |
|
outs = 0 |
|
if self.separate_prosody_encoder: |
|
prosody_feature = self.preprocess(wave_segments) |
|
|
|
f0_input = prosody_feature |
|
f0_input = self.melspec_linear(f0_input) |
|
f0_input = self.melspec_encoder( |
|
f0_input, |
|
torch.ones(f0_input.shape[0], 1, f0_input.shape[2]) |
|
.to(f0_input.device) |
|
.bool(), |
|
) |
|
f0_input = self.melspec_linear2(f0_input) |
|
|
|
common_min_size = min(f0_input.size(2), x.size(2)) |
|
f0_input = f0_input[:, :, :common_min_size] |
|
|
|
x = x[:, :, :common_min_size] |
|
|
|
( |
|
z_p, |
|
codes_p, |
|
latents_p, |
|
commitment_loss_p, |
|
codebook_loss_p, |
|
) = self.prosody_quantizer(f0_input, 1) |
|
outs += z_p.detach() |
|
else: |
|
( |
|
z_p, |
|
codes_p, |
|
latents_p, |
|
commitment_loss_p, |
|
codebook_loss_p, |
|
) = self.prosody_quantizer(x, 1) |
|
outs += z_p.detach() |
|
|
|
( |
|
z_c, |
|
codes_c, |
|
latents_c, |
|
commitment_loss_c, |
|
codebook_loss_c, |
|
) = self.content_quantizer(x, n_c) |
|
outs += z_c.detach() |
|
|
|
timbre_residual_feature = x - z_p.detach() - z_c.detach() |
|
|
|
( |
|
z_t, |
|
codes_t, |
|
latents_t, |
|
commitment_loss_t, |
|
codebook_loss_t, |
|
) = self.timbre_quantizer(timbre_residual_feature, 2) |
|
outs += z_t |
|
|
|
residual_feature = timbre_residual_feature - z_t |
|
|
|
( |
|
z_r, |
|
codes_r, |
|
latents_r, |
|
commitment_loss_r, |
|
codebook_loss_r, |
|
) = self.residual_quantizer(residual_feature, 3) |
|
|
|
return [codes_c, codes_p, codes_t, codes_r], [z_c, z_p, z_t, z_r] |
|
|
|
def forward( |
|
self, x, wave_segments, noise_added_flags, recon_noisy_flags, n_c=2, n_t=2 |
|
): |
|
|
|
|
|
outs = 0 |
|
if self.separate_prosody_encoder: |
|
prosody_feature = self.preprocess(wave_segments) |
|
|
|
f0_input = prosody_feature |
|
f0_input = self.melspec_linear(f0_input) |
|
f0_input = self.melspec_encoder( |
|
f0_input, |
|
torch.ones(f0_input.shape[0], 1, f0_input.shape[2]) |
|
.to(f0_input.device) |
|
.bool(), |
|
) |
|
f0_input = self.melspec_linear2(f0_input) |
|
|
|
common_min_size = min(f0_input.size(2), x.size(2)) |
|
f0_input = f0_input[:, :, :common_min_size] |
|
|
|
x = x[:, :, :common_min_size] |
|
|
|
( |
|
z_p, |
|
codes_p, |
|
latents_p, |
|
commitment_loss_p, |
|
codebook_loss_p, |
|
) = self.prosody_quantizer(f0_input, 1) |
|
outs += z_p.detach() |
|
else: |
|
( |
|
z_p, |
|
codes_p, |
|
latents_p, |
|
commitment_loss_p, |
|
codebook_loss_p, |
|
) = self.prosody_quantizer(x, 1) |
|
outs += z_p.detach() |
|
|
|
( |
|
z_c, |
|
codes_c, |
|
latents_c, |
|
commitment_loss_c, |
|
codebook_loss_c, |
|
) = self.content_quantizer(x, n_c) |
|
outs += z_c.detach() |
|
|
|
timbre_residual_feature = x - z_p.detach() - z_c.detach() |
|
|
|
( |
|
z_t, |
|
codes_t, |
|
latents_t, |
|
commitment_loss_t, |
|
codebook_loss_t, |
|
) = self.timbre_quantizer(timbre_residual_feature, n_t) |
|
outs += z_t |
|
|
|
residual_feature = timbre_residual_feature - z_t |
|
|
|
( |
|
z_r, |
|
codes_r, |
|
latents_r, |
|
commitment_loss_r, |
|
codebook_loss_r, |
|
) = self.residual_quantizer(residual_feature, 3) |
|
|
|
bsz = z_r.shape[0] |
|
res_mask = np.random.choice( |
|
[0, 1], |
|
size=bsz, |
|
p=[ |
|
self.prob_random_mask_residual, |
|
1 - self.prob_random_mask_residual, |
|
], |
|
) |
|
res_mask = torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1) |
|
res_mask = res_mask.to(device=z_r.device, dtype=z_r.dtype) |
|
noise_must_on = noise_added_flags * recon_noisy_flags |
|
noise_must_off = noise_added_flags * (~recon_noisy_flags) |
|
res_mask[noise_must_on] = 1 |
|
res_mask[noise_must_off] = 0 |
|
|
|
outs += z_r * res_mask |
|
|
|
quantized = [z_p, z_c, z_t, z_r] |
|
commitment_losses = ( |
|
commitment_loss_p |
|
+ commitment_loss_c |
|
+ commitment_loss_t |
|
+ commitment_loss_r |
|
) |
|
codebook_losses = ( |
|
codebook_loss_p + codebook_loss_c + codebook_loss_t + codebook_loss_r |
|
) |
|
|
|
return outs, quantized, commitment_losses, codebook_losses |
|
|
|
def forward_v2( |
|
self, |
|
x, |
|
wave_segments, |
|
n_c=1, |
|
n_t=2, |
|
full_waves=None, |
|
wave_lens=None, |
|
return_codes=False, |
|
): |
|
|
|
if full_waves is None: |
|
mel = self.preprocess(wave_segments, n_bins=80) |
|
timbre = self.timbre_encoder( |
|
mel, torch.ones(mel.size(0), 1, mel.size(2)).bool().to(mel.device) |
|
) |
|
else: |
|
mel = self.preprocess(full_waves, n_bins=80) |
|
timbre = self.timbre_encoder( |
|
mel, |
|
sequence_mask(wave_lens // self.hop_length, mel.size(-1)).unsqueeze(1), |
|
) |
|
outs = 0 |
|
if self.separate_prosody_encoder: |
|
prosody_feature = self.preprocess(wave_segments) |
|
|
|
f0_input = prosody_feature |
|
f0_input = self.melspec_linear(f0_input) |
|
f0_input = self.melspec_encoder( |
|
f0_input, |
|
torch.ones(f0_input.shape[0], 1, f0_input.shape[2]) |
|
.to(f0_input.device) |
|
.bool(), |
|
) |
|
f0_input = self.melspec_linear2(f0_input) |
|
|
|
common_min_size = min(f0_input.size(2), x.size(2)) |
|
f0_input = f0_input[:, :, :common_min_size] |
|
|
|
x = x[:, :, :common_min_size] |
|
|
|
( |
|
z_p, |
|
codes_p, |
|
latents_p, |
|
commitment_loss_p, |
|
codebook_loss_p, |
|
) = self.prosody_quantizer(f0_input, 1) |
|
outs += z_p.detach() |
|
else: |
|
( |
|
z_p, |
|
codes_p, |
|
latents_p, |
|
commitment_loss_p, |
|
codebook_loss_p, |
|
) = self.prosody_quantizer(x, 1) |
|
outs += z_p.detach() |
|
|
|
( |
|
z_c, |
|
codes_c, |
|
latents_c, |
|
commitment_loss_c, |
|
codebook_loss_c, |
|
) = self.content_quantizer(x, n_c) |
|
outs += z_c.detach() |
|
|
|
residual_feature = x - z_p.detach() - z_c.detach() |
|
|
|
( |
|
z_r, |
|
codes_r, |
|
latents_r, |
|
commitment_loss_r, |
|
codebook_loss_r, |
|
) = self.residual_quantizer(residual_feature, 3) |
|
|
|
bsz = z_r.shape[0] |
|
res_mask = np.random.choice( |
|
[0, 1], |
|
size=bsz, |
|
p=[ |
|
self.prob_random_mask_residual, |
|
1 - self.prob_random_mask_residual, |
|
], |
|
) |
|
res_mask = torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1) |
|
res_mask = res_mask.to(device=z_r.device, dtype=z_r.dtype) |
|
|
|
if not self.training: |
|
res_mask = torch.ones_like(res_mask) |
|
outs += z_r * res_mask |
|
|
|
quantized = [z_p, z_c, z_r] |
|
codes = [codes_p, codes_c, codes_r] |
|
commitment_losses = commitment_loss_p + commitment_loss_c + commitment_loss_r |
|
codebook_losses = codebook_loss_p + codebook_loss_c + codebook_loss_r |
|
|
|
style = self.timbre_linear(timbre).unsqueeze(2) |
|
gamma, beta = style.chunk(2, 1) |
|
outs = outs.transpose(1, 2) |
|
outs = self.timbre_norm(outs) |
|
outs = outs.transpose(1, 2) |
|
outs = outs * gamma + beta |
|
|
|
if return_codes: |
|
return outs, quantized, commitment_losses, codebook_losses, timbre, codes |
|
else: |
|
return outs, quantized, commitment_losses, codebook_losses, timbre |
|
|
|
def voice_conversion(self, z, ref_wave): |
|
ref_mel = self.preprocess(ref_wave, n_bins=80) |
|
ref_timbre = self.timbre_encoder( |
|
ref_mel, |
|
sequence_mask( |
|
torch.LongTensor([ref_wave.size(-1)]).to(z.device) // self.hop_length, |
|
ref_mel.size(-1), |
|
).unsqueeze(1), |
|
) |
|
style = self.timbre_linear(ref_timbre).unsqueeze(2) |
|
gamma, beta = style.chunk(2, 1) |
|
outs = z.transpose(1, 2) |
|
outs = self.timbre_norm(outs) |
|
outs = outs.transpose(1, 2) |
|
outs = outs * gamma + beta |
|
|
|
return outs |
|
|
|
|
|
class FApredictors(nn.Module): |
|
def __init__( |
|
self, |
|
in_dim=1024, |
|
use_gr_content_f0=False, |
|
use_gr_prosody_phone=False, |
|
use_gr_residual_f0=False, |
|
use_gr_residual_phone=False, |
|
use_gr_timbre_content=True, |
|
use_gr_timbre_prosody=True, |
|
use_gr_x_timbre=False, |
|
norm_f0=True, |
|
timbre_norm=False, |
|
use_gr_content_global_f0=False, |
|
): |
|
super(FApredictors, self).__init__() |
|
self.f0_predictor = CNNLSTM(in_dim, 1, 2) |
|
self.phone_predictor = CNNLSTM(in_dim, 1024, 1) |
|
if timbre_norm: |
|
self.timbre_predictor = nn.Linear(in_dim, 20000) |
|
else: |
|
self.timbre_predictor = CNNLSTM(in_dim, 20000, 1, global_pred=True) |
|
|
|
self.use_gr_content_f0 = use_gr_content_f0 |
|
self.use_gr_prosody_phone = use_gr_prosody_phone |
|
self.use_gr_residual_f0 = use_gr_residual_f0 |
|
self.use_gr_residual_phone = use_gr_residual_phone |
|
self.use_gr_timbre_content = use_gr_timbre_content |
|
self.use_gr_timbre_prosody = use_gr_timbre_prosody |
|
self.use_gr_x_timbre = use_gr_x_timbre |
|
|
|
self.rev_f0_predictor = nn.Sequential( |
|
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1, 2) |
|
) |
|
self.rev_content_predictor = nn.Sequential( |
|
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1024, 1) |
|
) |
|
self.rev_timbre_predictor = nn.Sequential( |
|
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 20000, 1, global_pred=True) |
|
) |
|
|
|
self.norm_f0 = norm_f0 |
|
self.timbre_norm = timbre_norm |
|
if timbre_norm: |
|
self.forward = self.forward_v2 |
|
self.global_f0_predictor = nn.Linear(in_dim, 1) |
|
|
|
self.use_gr_content_global_f0 = use_gr_content_global_f0 |
|
if use_gr_content_global_f0: |
|
self.rev_global_f0_predictor = nn.Sequential( |
|
GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1, 1, global_pred=True) |
|
) |
|
|
|
def forward(self, quantized): |
|
prosody_latent = quantized[0] |
|
content_latent = quantized[1] |
|
timbre_latent = quantized[2] |
|
residual_latent = quantized[3] |
|
content_pred = self.phone_predictor(content_latent)[0] |
|
|
|
if self.norm_f0: |
|
spk_pred = self.timbre_predictor(timbre_latent)[0] |
|
f0_pred, uv_pred = self.f0_predictor(prosody_latent) |
|
else: |
|
spk_pred = self.timbre_predictor(timbre_latent + prosody_latent)[0] |
|
f0_pred, uv_pred = self.f0_predictor(prosody_latent + timbre_latent) |
|
|
|
prosody_rev_latent = torch.zeros_like(quantized[0]) |
|
if self.use_gr_content_f0: |
|
prosody_rev_latent += quantized[1] |
|
if self.use_gr_timbre_prosody: |
|
prosody_rev_latent += quantized[2] |
|
if self.use_gr_residual_f0: |
|
prosody_rev_latent += quantized[3] |
|
rev_f0_pred, rev_uv_pred = self.rev_f0_predictor(prosody_rev_latent) |
|
|
|
content_rev_latent = torch.zeros_like(quantized[1]) |
|
if self.use_gr_prosody_phone: |
|
content_rev_latent += quantized[0] |
|
if self.use_gr_timbre_content: |
|
content_rev_latent += quantized[2] |
|
if self.use_gr_residual_phone: |
|
content_rev_latent += quantized[3] |
|
rev_content_pred = self.rev_content_predictor(content_rev_latent)[0] |
|
|
|
if self.norm_f0: |
|
timbre_rev_latent = quantized[0] + quantized[1] + quantized[3] |
|
else: |
|
timbre_rev_latent = quantized[1] + quantized[3] |
|
if self.use_gr_x_timbre: |
|
x_spk_pred = self.rev_timbre_predictor(timbre_rev_latent)[0] |
|
else: |
|
x_spk_pred = None |
|
|
|
preds = { |
|
"f0": f0_pred, |
|
"uv": uv_pred, |
|
"content": content_pred, |
|
"timbre": spk_pred, |
|
} |
|
|
|
rev_preds = { |
|
"rev_f0": rev_f0_pred, |
|
"rev_uv": rev_uv_pred, |
|
"rev_content": rev_content_pred, |
|
"x_timbre": x_spk_pred, |
|
} |
|
return preds, rev_preds |
|
|
|
def forward_v2(self, quantized, timbre): |
|
prosody_latent = quantized[0] |
|
content_latent = quantized[1] |
|
residual_latent = quantized[2] |
|
content_pred = self.phone_predictor(content_latent)[0] |
|
|
|
spk_pred = self.timbre_predictor(timbre) |
|
f0_pred, uv_pred = self.f0_predictor(prosody_latent) |
|
|
|
prosody_rev_latent = torch.zeros_like(prosody_latent) |
|
if self.use_gr_content_f0: |
|
prosody_rev_latent += content_latent |
|
if self.use_gr_residual_f0: |
|
prosody_rev_latent += residual_latent |
|
rev_f0_pred, rev_uv_pred = self.rev_f0_predictor(prosody_rev_latent) |
|
|
|
content_rev_latent = torch.zeros_like(content_latent) |
|
if self.use_gr_prosody_phone: |
|
content_rev_latent += prosody_latent |
|
if self.use_gr_residual_phone: |
|
content_rev_latent += residual_latent |
|
rev_content_pred = self.rev_content_predictor(content_rev_latent)[0] |
|
|
|
timbre_rev_latent = prosody_latent + content_latent + residual_latent |
|
if self.use_gr_x_timbre: |
|
x_spk_pred = self.rev_timbre_predictor(timbre_rev_latent)[0] |
|
else: |
|
x_spk_pred = None |
|
|
|
preds = { |
|
"f0": f0_pred, |
|
"uv": uv_pred, |
|
"content": content_pred, |
|
"timbre": spk_pred, |
|
} |
|
|
|
rev_preds = { |
|
"rev_f0": rev_f0_pred, |
|
"rev_uv": rev_uv_pred, |
|
"rev_content": rev_content_pred, |
|
"x_timbre": x_spk_pred, |
|
} |
|
return preds, rev_preds |
|
|