|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from torch.autograd import Variable |
|
import torch.nn.functional as F |
|
|
|
|
|
@torch.jit.script |
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): |
|
n_channels_int = n_channels[0] |
|
in_act = input_a + input_b |
|
t_act = torch.tanh(in_act[:, :n_channels_int, :]) |
|
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) |
|
acts = t_act * s_act |
|
return acts |
|
|
|
|
|
class Invertible1x1Conv(torch.nn.Module): |
|
""" |
|
The layer outputs both the convolution, and the log determinant |
|
of its weight matrix. If reverse=True it does convolution with |
|
inverse |
|
""" |
|
|
|
def __init__(self, c): |
|
super(Invertible1x1Conv, self).__init__() |
|
self.conv = torch.nn.Conv1d( |
|
c, c, kernel_size=1, stride=1, padding=0, bias=False |
|
) |
|
|
|
|
|
W = torch.linalg.qr(torch.FloatTensor(c, c).normal_())[0] |
|
|
|
|
|
if torch.det(W) < 0: |
|
W[:, 0] = -1 * W[:, 0] |
|
W = W.view(c, c, 1) |
|
self.conv.weight.data = W |
|
|
|
def forward(self, z, reverse=False): |
|
|
|
batch_size, group_size, n_of_groups = z.size() |
|
|
|
W = self.conv.weight.squeeze() |
|
|
|
if reverse: |
|
if not hasattr(self, "W_inverse"): |
|
|
|
W_inverse = W.float().inverse() |
|
W_inverse = Variable(W_inverse[..., None]) |
|
if z.type() == "torch.cuda.HalfTensor": |
|
W_inverse = W_inverse.half() |
|
self.W_inverse = W_inverse |
|
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) |
|
return z |
|
else: |
|
|
|
log_det_W = batch_size * n_of_groups * torch.logdet(W) |
|
z = self.conv(z) |
|
return z, log_det_W |
|
|
|
|
|
class WN(torch.nn.Module): |
|
""" |
|
This is the WaveNet like layer for the affine coupling. The primary difference |
|
from WaveNet is the convolutions need not be causal. There is also no dilation |
|
size reset. The dilation only doubles on each layer |
|
""" |
|
|
|
def __init__( |
|
self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size |
|
): |
|
super(WN, self).__init__() |
|
assert kernel_size % 2 == 1 |
|
assert n_channels % 2 == 0 |
|
self.n_layers = n_layers |
|
self.n_channels = n_channels |
|
self.in_layers = torch.nn.ModuleList() |
|
self.res_skip_layers = torch.nn.ModuleList() |
|
|
|
start = torch.nn.Conv1d(n_in_channels, n_channels, 1) |
|
start = torch.nn.utils.weight_norm(start, name="weight") |
|
self.start = start |
|
|
|
|
|
|
|
end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1) |
|
end.weight.data.zero_() |
|
end.bias.data.zero_() |
|
self.end = end |
|
|
|
cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels * n_layers, 1) |
|
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") |
|
|
|
for i in range(n_layers): |
|
dilation = 2**i |
|
padding = int((kernel_size * dilation - dilation) / 2) |
|
in_layer = torch.nn.Conv1d( |
|
n_channels, |
|
2 * n_channels, |
|
kernel_size, |
|
dilation=dilation, |
|
padding=padding, |
|
) |
|
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") |
|
self.in_layers.append(in_layer) |
|
|
|
|
|
if i < n_layers - 1: |
|
res_skip_channels = 2 * n_channels |
|
else: |
|
res_skip_channels = n_channels |
|
res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1) |
|
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") |
|
self.res_skip_layers.append(res_skip_layer) |
|
|
|
def forward(self, forward_input): |
|
audio, spect = forward_input |
|
audio = self.start(audio) |
|
output = torch.zeros_like(audio) |
|
n_channels_tensor = torch.IntTensor([self.n_channels]) |
|
|
|
spect = self.cond_layer(spect) |
|
|
|
for i in range(self.n_layers): |
|
spect_offset = i * 2 * self.n_channels |
|
acts = fused_add_tanh_sigmoid_multiply( |
|
self.in_layers[i](audio), |
|
spect[:, spect_offset : spect_offset + 2 * self.n_channels, :], |
|
n_channels_tensor, |
|
) |
|
|
|
res_skip_acts = self.res_skip_layers[i](acts) |
|
if i < self.n_layers - 1: |
|
audio = audio + res_skip_acts[:, : self.n_channels, :] |
|
output = output + res_skip_acts[:, self.n_channels :, :] |
|
else: |
|
output = output + res_skip_acts |
|
|
|
return self.end(output) |
|
|
|
|
|
class WaveGlow(torch.nn.Module): |
|
def __init__(self, cfg): |
|
super(WaveGlow, self).__init__() |
|
|
|
self.cfg = cfg |
|
|
|
self.upsample = torch.nn.ConvTranspose1d( |
|
self.cfg.VOCODER.INPUT_DIM, |
|
self.cfg.VOCODER.INPUT_DIM, |
|
1024, |
|
stride=256, |
|
) |
|
assert self.cfg.VOCODER.N_GROUP % 2 == 0 |
|
self.n_flows = self.cfg.VOCODER.N_FLOWS |
|
self.n_group = self.cfg.VOCODER.N_GROUP |
|
self.n_early_every = self.cfg.VOCODER.N_EARLY_EVERY |
|
self.n_early_size = self.cfg.VOCODER.N_EARLY_SIZE |
|
self.WN = torch.nn.ModuleList() |
|
self.convinv = torch.nn.ModuleList() |
|
|
|
n_half = int(self.cfg.VOCODER.N_GROUP / 2) |
|
|
|
|
|
|
|
n_remaining_channels = self.cfg.VOCODER.N_GROUP |
|
for k in range(self.cfg.VOCODER.N_FLOWS): |
|
if k % self.n_early_every == 0 and k > 0: |
|
n_half = n_half - int(self.n_early_size / 2) |
|
n_remaining_channels = n_remaining_channels - self.n_early_size |
|
self.convinv.append(Invertible1x1Conv(n_remaining_channels)) |
|
self.WN.append( |
|
WN( |
|
n_half, |
|
self.cfg.VOCODER.INPUT_DIM * self.cfg.VOCODER.N_GROUP, |
|
self.cfg.VOCODER.N_LAYERS, |
|
self.cfg.VOCODER.N_CHANNELS, |
|
self.cfg.VOCODER.KERNEL_SIZE, |
|
) |
|
) |
|
self.n_remaining_channels = n_remaining_channels |
|
|
|
def forward(self, forward_input): |
|
""" |
|
forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames |
|
forward_input[1] = audio: batch x time |
|
""" |
|
spect, audio = forward_input |
|
|
|
|
|
spect = self.upsample(spect) |
|
assert spect.size(2) >= audio.size(1) |
|
if spect.size(2) > audio.size(1): |
|
spect = spect[:, :, : audio.size(1)] |
|
|
|
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) |
|
spect = ( |
|
spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1) |
|
) |
|
|
|
audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1) |
|
output_audio = [] |
|
log_s_list = [] |
|
log_det_W_list = [] |
|
|
|
for k in range(self.n_flows): |
|
if k % self.n_early_every == 0 and k > 0: |
|
output_audio.append(audio[:, : self.n_early_size, :]) |
|
audio = audio[:, self.n_early_size :, :] |
|
|
|
audio, log_det_W = self.convinv[k](audio) |
|
log_det_W_list.append(log_det_W) |
|
|
|
n_half = int(audio.size(1) / 2) |
|
audio_0 = audio[:, :n_half, :] |
|
audio_1 = audio[:, n_half:, :] |
|
|
|
output = self.WN[k]((audio_0, spect)) |
|
log_s = output[:, n_half:, :] |
|
b = output[:, :n_half, :] |
|
audio_1 = torch.exp(log_s) * audio_1 + b |
|
log_s_list.append(log_s) |
|
|
|
audio = torch.cat([audio_0, audio_1], 1) |
|
|
|
output_audio.append(audio) |
|
return torch.cat(output_audio, 1), log_s_list, log_det_W_list |
|
|
|
@staticmethod |
|
def remove_weightnorm(model): |
|
waveglow = model |
|
for WN in waveglow.WN: |
|
WN.start = torch.nn.utils.remove_weight_norm(WN.start) |
|
WN.in_layers = remove(WN.in_layers) |
|
WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer) |
|
WN.res_skip_layers = remove(WN.res_skip_layers) |
|
return waveglow |
|
|
|
|
|
def remove(conv_list): |
|
new_conv_list = torch.nn.ModuleList() |
|
for old_conv in conv_list: |
|
old_conv = torch.nn.utils.remove_weight_norm(old_conv) |
|
new_conv_list.append(old_conv) |
|
return new_conv_list |
|
|