|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SqueezeformerEncoderLayer definition.""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
from typing import Optional, Tuple |
|
|
|
|
|
class SqueezeformerEncoderLayer(nn.Module): |
|
"""Encoder layer module. |
|
Args: |
|
size (int): Input dimension. |
|
self_attn (torch.nn.Module): Self-attention module instance. |
|
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` |
|
instance can be used as the argument. |
|
feed_forward1 (torch.nn.Module): Feed-forward module instance. |
|
`PositionwiseFeedForward` instance can be used as the argument. |
|
conv_module (torch.nn.Module): Convolution module instance. |
|
`ConvlutionModule` instance can be used as the argument. |
|
feed_forward2 (torch.nn.Module): Feed-forward module instance. |
|
`PositionwiseFeedForward` instance can be used as the argument. |
|
dropout_rate (float): Dropout rate. |
|
normalize_before (bool): |
|
True: use layer_norm before each sub-block. |
|
False: use layer_norm after each sub-block. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: int, |
|
self_attn: torch.nn.Module, |
|
feed_forward1: Optional[nn.Module] = None, |
|
conv_module: Optional[nn.Module] = None, |
|
feed_forward2: Optional[nn.Module] = None, |
|
normalize_before: bool = False, |
|
dropout_rate: float = 0.1, |
|
concat_after: bool = False, |
|
): |
|
super(SqueezeformerEncoderLayer, self).__init__() |
|
self.size = size |
|
self.self_attn = self_attn |
|
self.layer_norm1 = nn.LayerNorm(size) |
|
self.ffn1 = feed_forward1 |
|
self.layer_norm2 = nn.LayerNorm(size) |
|
self.conv_module = conv_module |
|
self.layer_norm3 = nn.LayerNorm(size) |
|
self.ffn2 = feed_forward2 |
|
self.layer_norm4 = nn.LayerNorm(size) |
|
self.normalize_before = normalize_before |
|
self.dropout = nn.Dropout(dropout_rate) |
|
self.concat_after = concat_after |
|
if concat_after: |
|
self.concat_linear = nn.Linear(size + size, size) |
|
else: |
|
self.concat_linear = nn.Identity() |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
mask: torch.Tensor, |
|
pos_emb: torch.Tensor, |
|
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), |
|
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), |
|
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.layer_norm1(x) |
|
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, att_cache) |
|
if self.concat_after: |
|
x_concat = torch.cat((x, x_att), dim=-1) |
|
x = residual + self.concat_linear(x_concat) |
|
else: |
|
x = residual + self.dropout(x_att) |
|
if not self.normalize_before: |
|
x = self.layer_norm1(x) |
|
|
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.layer_norm2(x) |
|
x = self.ffn1(x) |
|
x = residual + self.dropout(x) |
|
if not self.normalize_before: |
|
x = self.layer_norm2(x) |
|
|
|
|
|
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) |
|
residual = x |
|
if self.normalize_before: |
|
x = self.layer_norm3(x) |
|
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) |
|
x = residual + self.dropout(x) |
|
if not self.normalize_before: |
|
x = self.layer_norm3(x) |
|
|
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.layer_norm4(x) |
|
x = self.ffn2(x) |
|
|
|
x = residual + self.dropout(x) |
|
if not self.normalize_before: |
|
x = self.layer_norm4(x) |
|
|
|
return x, mask, new_att_cache, new_cnn_cache |
|
|