maskgct / egs /svc /DiffComoSVC /exp_config.json
Hecheng0625's picture
Upload 167 files
8c92a11 verified
{
"base_config": "config/comosvc.json",
"model_type": "DiffComoSVC",
"dataset": [
"m4singer",
"opencpop",
"opensinger",
"svcc",
"vctk"
],
"dataset_path": {
// TODO: Fill in your dataset path
"m4singer": "[M4Singer dataset path]",
"opencpop": "[Opencpop dataset path]",
"opensinger": "[OpenSinger dataset path]",
"svcc": "[SVCC dataset path]",
"vctk": "[VCTK dataset path]"
},
// TODO: Fill in the output log path
"log_dir": "[Your path to save logs and checkpoints]",
"preprocess": {
// TODO: Fill in the output data path
"processed_dir": "[Your path to save processed data]",
// Config for features extraction
"extract_mel": true,
"extract_pitch": true,
"extract_energy": true,
"extract_whisper_feature": true,
"extract_contentvec_feature": true,
"extract_wenet_feature": false,
"whisper_batch_size": 30, // decrease it if your GPU is out of memory
"contentvec_batch_size": 1,
// Fill in the content-based pretrained model's path
"contentvec_file": "pretrained/contentvec/checkpoint_best_legacy_500.pt",
"wenet_model_path": "pretrained/wenet/20220506_u2pp_conformer_exp/final.pt",
"wenet_config": "pretrained/wenet/20220506_u2pp_conformer_exp/train.yaml",
"whisper_model": "medium",
"whisper_model_path": "pretrained/whisper/medium.pt",
// Config for features usage
"use_mel": true,
"use_min_max_norm_mel": true,
"use_frame_pitch": true,
"use_frame_energy": true,
"use_spkid": true,
"use_whisper": true,
"use_contentvec": true,
"use_wenet": false,
"n_mel": 100,
"sample_rate": 24000
},
"model": {
"teacher_model_path":"[Your_teacher_model_checkpoint].bin",
"condition_encoder": {
// Config for features usage
"use_whisper": true,
"use_contentvec": true,
"use_wenet": false,
"whisper_dim": 1024,
"contentvec_dim": 256,
"wenet_dim": 512,
"use_singer_encoder": false,
"pitch_min": 50,
"pitch_max": 1100
},
"comosvc":{
"distill": false,
// conformer encoder
"input_dim": 384,
"output_dim": 100,
"n_heads": 2,
"n_layers": 6,
"filter_channels":512,
"dropout":0.1,
// karras diffusion
"P_mean": -1.2,
"P_std": 1.2,
"sigma_data": 0.5,
"sigma_min": 0.002,
"sigma_max": 80,
"rho": 7,
"n_timesteps": 40,
},
"diffusion": {
// Diffusion steps encoder
"step_encoder": {
"dim_raw_embedding": 128,
"dim_hidden_layer": 512,
"activation": "SiLU",
"num_layer": 2,
"max_period": 10000
},
// Diffusion decoder
"model_type": "bidilconv",
// bidilconv, unet2d, TODO: unet1d
"bidilconv": {
"base_channel": 384,
"n_res_block": 20,
"conv_kernel_size": 3,
"dilation_cycle_length": 4,
// specially, 1 means no dilation
"conditioner_size": 100
}
}
},
"train": {
"batch_size": 64,
"gradient_accumulation_step": 1,
"max_epoch": -1, // -1 means no limit
"save_checkpoint_stride": [
50,
50
],
"keep_last": [
5,
-1
],
"run_eval": [
false,
true
],
"adamw": {
"lr": 4.0e-4
},
"reducelronplateau": {
"factor": 0.8,
"patience": 10,
"min_lr": 1.0e-4
},
"dataloader": {
"num_worker": 8,
"pin_memory": true
},
"sampler": {
"holistic_shuffle": false,
"drop_last": true
}
},
"inference": {
"comosvc": {
"inference_steps": 40
}
}
}