maskgct / models /tts /vits /vits_inference.py
Hecheng0625's picture
Upload 409 files
c968fc3 verified
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import time
import numpy as np
from tqdm import tqdm
import torch
import json
from models.tts.base.tts_inferece import TTSInference
from models.tts.vits.vits_dataset import VITSTestDataset, VITSTestCollator
from models.tts.vits.vits import SynthesizerTrn
from processors.phone_extractor import phoneExtractor
from text.text_token_collation import phoneIDCollation
from utils.data_utils import *
class VitsInference(TTSInference):
def __init__(self, args=None, cfg=None):
TTSInference.__init__(self, args, cfg)
def _build_model(self):
net_g = SynthesizerTrn(
self.cfg.model.text_token_num,
self.cfg.preprocess.n_fft // 2 + 1,
self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size,
**self.cfg.model,
)
return net_g
def _build_test_dataset(sefl):
return VITSTestDataset, VITSTestCollator
def build_save_dir(self, dataset, speaker):
save_dir = os.path.join(
self.args.output_dir,
"tts_am_step-{}_{}".format(self.am_restore_step, self.args.mode),
)
if dataset is not None:
save_dir = os.path.join(save_dir, "data_{}".format(dataset))
if speaker != -1:
save_dir = os.path.join(
save_dir,
"spk_{}".format(speaker),
)
os.makedirs(save_dir, exist_ok=True)
print("Saving to ", save_dir)
return save_dir
def inference_for_batches(
self, noise_scale=0.667, noise_scale_w=0.8, length_scale=1
):
###### Construct test_batch ######
n_batch = len(self.test_dataloader)
now = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
print(
"Model eval time: {}, batch_size = {}, n_batch = {}".format(
now, self.test_batch_size, n_batch
)
)
self.model.eval()
###### Inference for each batch ######
pred_res = []
with torch.no_grad():
for i, batch_data in enumerate(
self.test_dataloader if n_batch == 1 else tqdm(self.test_dataloader)
):
spk_id = None
if (
self.cfg.preprocess.use_spkid
and self.cfg.train.multi_speaker_training
):
spk_id = batch_data["spk_id"]
outputs = self.model.infer(
batch_data["phone_seq"],
batch_data["phone_len"],
spk_id,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)
audios = outputs["y_hat"]
masks = outputs["mask"]
for idx in range(audios.size(0)):
audio = audios[idx, 0, :].data.cpu().float()
mask = masks[idx, :, :]
audio_length = (
mask.sum([0, 1]).long() * self.cfg.preprocess.hop_size
)
audio_length = audio_length.cpu().numpy()
audio = audio[:audio_length]
pred_res.append(audio)
return pred_res
def inference_for_single_utterance(
self, noise_scale=0.667, noise_scale_w=0.8, length_scale=1
):
text = self.args.text
# get phone symbol file
phone_symbol_file = None
if self.cfg.preprocess.phone_extractor != "lexicon":
phone_symbol_file = os.path.join(
self.exp_dir, self.cfg.preprocess.symbols_dict
)
assert os.path.exists(phone_symbol_file)
# convert text to phone sequence
phone_extractor = phoneExtractor(self.cfg)
phone_seq = phone_extractor.extract_phone(text) # phone_seq: list
# convert phone sequence to phone id sequence
phon_id_collator = phoneIDCollation(
self.cfg, symbols_dict_file=phone_symbol_file
)
phone_id_seq = phon_id_collator.get_phone_id_sequence(self.cfg, phone_seq)
if self.cfg.preprocess.add_blank:
phone_id_seq = intersperse(phone_id_seq, 0)
# convert phone sequence to phone id sequence
phone_id_seq = np.array(phone_id_seq)
phone_id_seq = torch.from_numpy(phone_id_seq)
# get speaker id if multi-speaker training and use speaker id
speaker_id = None
if self.cfg.preprocess.use_spkid and self.cfg.train.multi_speaker_training:
spk2id_file = os.path.join(self.exp_dir, self.cfg.preprocess.spk2id)
with open(spk2id_file, "r") as f:
spk2id = json.load(f)
speaker_name = self.args.speaker_name
assert (
speaker_name in spk2id
), f"Speaker {speaker_name} not found in the spk2id keys. \
Please make sure you've specified the correct speaker name in infer_speaker_name."
speaker_id = spk2id[speaker_name]
speaker_id = torch.from_numpy(
np.array([speaker_id], dtype=np.int32)
).unsqueeze(0)
with torch.no_grad():
x_tst = phone_id_seq.to(self.device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phone_id_seq.size(0)]).to(self.device)
if speaker_id is not None:
speaker_id = speaker_id.to(self.device)
outputs = self.model.infer(
x_tst,
x_tst_lengths,
sid=speaker_id,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)
audio = outputs["y_hat"][0, 0].data.cpu().float().numpy()
return audio