|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
from torch.nn import Conv2d, Conv1d |
|
from torch.nn.utils import weight_norm, spectral_norm |
|
from torch import nn |
|
from modules.vocoder_blocks import * |
|
from models.vocoders.gan.discriminator.msd import MultiScaleDiscriminator_JETS |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
class DiscriminatorP(torch.nn.Module): |
|
def __init__(self, cfg, period, kernel_size=5, stride=3, use_spectral_norm=False): |
|
super(DiscriminatorP, self).__init__() |
|
self.period = period |
|
self.d_mult = cfg.model.mpd.discriminator_channel_mult_factor |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList( |
|
[ |
|
norm_f( |
|
Conv2d( |
|
1, |
|
int(32 * self.d_mult), |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(5, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
int(32 * self.d_mult), |
|
int(128 * self.d_mult), |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(5, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
int(128 * self.d_mult), |
|
int(512 * self.d_mult), |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(5, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
int(512 * self.d_mult), |
|
int(1024 * self.d_mult), |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(5, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
int(1024 * self.d_mult), |
|
int(1024 * self.d_mult), |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(2, 0), |
|
) |
|
), |
|
] |
|
) |
|
self.conv_post = norm_f( |
|
Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0)) |
|
) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
|
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = F.pad(x, (0, n_pad), "reflect") |
|
t = t + n_pad |
|
|
|
x = x.view(b, c, t // self.period, self.period) |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
|
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module): |
|
def __init__(self, cfg): |
|
super(MultiPeriodDiscriminator, self).__init__() |
|
self.mpd_reshapes = cfg.model.mpd.mpd_reshapes |
|
print("mpd_reshapes: {}".format(self.mpd_reshapes)) |
|
discriminators = [ |
|
DiscriminatorP(cfg, rs, use_spectral_norm=cfg.model.mpd.use_spectral_norm) |
|
for rs in self.mpd_reshapes |
|
] |
|
self.discriminators = nn.ModuleList(discriminators) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
|
|
class DiscriminatorP_vits(torch.nn.Module): |
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): |
|
super(DiscriminatorP_vits, self).__init__() |
|
self.period = period |
|
self.use_spectral_norm = use_spectral_norm |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList( |
|
[ |
|
norm_f( |
|
Conv2d( |
|
1, |
|
32, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
32, |
|
128, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
128, |
|
512, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
512, |
|
1024, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
1024, |
|
1024, |
|
(kernel_size, 1), |
|
1, |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
] |
|
) |
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
|
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = F.pad(x, (0, n_pad), "reflect") |
|
t = t + n_pad |
|
x = x.view(b, c, t // self.period, self.period) |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class DiscriminatorS(torch.nn.Module): |
|
def __init__(self, use_spectral_norm=False): |
|
super(DiscriminatorS, self).__init__() |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList( |
|
[ |
|
norm_f(Conv1d(1, 16, 15, 1, padding=7)), |
|
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), |
|
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), |
|
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), |
|
] |
|
) |
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
|
|
class MultiPeriodDiscriminator_vits(torch.nn.Module): |
|
def __init__(self, use_spectral_norm=False): |
|
super(MultiPeriodDiscriminator_vits, self).__init__() |
|
periods = [2, 3, 5, 7, 11] |
|
|
|
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] |
|
discs = discs + [ |
|
DiscriminatorP_vits(i, use_spectral_norm=use_spectral_norm) for i in periods |
|
] |
|
self.discriminators = nn.ModuleList(discs) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_rs.append(fmap_r) |
|
fmap_gs.append(fmap_g) |
|
|
|
outputs = { |
|
"y_d_hat_r": y_d_rs, |
|
"y_d_hat_g": y_d_gs, |
|
"fmap_rs": fmap_rs, |
|
"fmap_gs": fmap_gs, |
|
} |
|
|
|
return outputs |
|
|
|
|
|
class DiscriminatorP_JETS(torch.nn.Module): |
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): |
|
super(DiscriminatorP_JETS, self).__init__() |
|
self.period = period |
|
self.use_spectral_norm = use_spectral_norm |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList( |
|
[ |
|
norm_f( |
|
Conv2d( |
|
1, |
|
32, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
32, |
|
128, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
128, |
|
512, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
512, |
|
1024, |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
norm_f( |
|
Conv2d( |
|
1024, |
|
1024, |
|
(kernel_size, 1), |
|
1, |
|
padding=(get_padding(kernel_size, 1), 0), |
|
) |
|
), |
|
] |
|
) |
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
|
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = F.pad(x, (0, n_pad), "reflect") |
|
t = t + n_pad |
|
x = x.view(b, c, t // self.period, self.period) |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
x = torch.flatten(x, 1, -1) |
|
fmap.append(x) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiPeriodDiscriminator_JETS(torch.nn.Module): |
|
def __init__(self, use_spectral_norm=False): |
|
super(MultiPeriodDiscriminator_JETS, self).__init__() |
|
periods = [2, 3, 5, 7, 11] |
|
|
|
discs = [ |
|
DiscriminatorP_JETS(i, use_spectral_norm=use_spectral_norm) for i in periods |
|
] |
|
self.discriminators = nn.ModuleList(discs) |
|
|
|
def forward(self, y): |
|
y_d_rs = [] |
|
fmap_rs = [] |
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(y) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
|
|
return y_d_rs, fmap_rs |
|
|
|
|
|
|
|
class MultiScaleMultiPeriodDiscriminator(torch.nn.Module): |
|
"""HiFi-GAN multi-scale + multi-period discriminator module.""" |
|
|
|
def __init__(self, use_spectral_norm=False): |
|
super(MultiScaleMultiPeriodDiscriminator, self).__init__() |
|
|
|
self.msd = MultiScaleDiscriminator_JETS() |
|
self.mpd = MultiPeriodDiscriminator_JETS() |
|
|
|
def forward(self, y): |
|
|
|
_, msd_outs_d_rs = self.msd(y) |
|
|
|
_, mpd_outs_d_rs = self.mpd(y) |
|
|
|
return msd_outs_d_rs + mpd_outs_d_rs |
|
|
|
|
|
|