|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d |
|
from torch.nn.utils import weight_norm, spectral_norm |
|
from modules.vocoder_blocks import * |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
class ISTFT(nn.Module): |
|
""" |
|
Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with |
|
windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges. |
|
See issue: https://github.com/pytorch/pytorch/issues/62323 |
|
Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs. |
|
The NOLA constraint is met as we trim padded samples anyway. |
|
|
|
Args: |
|
n_fft (int): Size of Fourier transform. |
|
hop_length (int): The distance between neighboring sliding window frames. |
|
win_length (int): The size of window frame and STFT filter. |
|
padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". |
|
""" |
|
|
|
def __init__( |
|
self, |
|
n_fft: int, |
|
hop_length: int, |
|
win_length: int, |
|
padding: str = "same", |
|
): |
|
super().__init__() |
|
if padding not in ["center", "same"]: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
self.padding = padding |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
|
|
def forward(self, spec: torch.Tensor, window) -> torch.Tensor: |
|
""" |
|
Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram. |
|
|
|
Args: |
|
spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size, |
|
N is the number of frequency bins, and T is the number of time frames. |
|
|
|
Returns: |
|
Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal. |
|
""" |
|
if self.padding == "center": |
|
|
|
return torch.istft( |
|
spec, |
|
self.n_fft, |
|
self.hop_length, |
|
self.win_length, |
|
window, |
|
center=True, |
|
) |
|
elif self.padding == "same": |
|
pad = (self.win_length - self.hop_length) // 2 |
|
else: |
|
raise ValueError("Padding must be 'center' or 'same'.") |
|
|
|
assert spec.dim() == 3, "Expected a 3D tensor as input" |
|
B, N, T = spec.shape |
|
|
|
|
|
ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward") |
|
ifft = ifft * window[None, :, None] |
|
|
|
|
|
output_size = (T - 1) * self.hop_length + self.win_length |
|
y = torch.nn.functional.fold( |
|
ifft, |
|
output_size=(1, output_size), |
|
kernel_size=(1, self.win_length), |
|
stride=(1, self.hop_length), |
|
)[:, 0, 0, pad:-pad] |
|
|
|
|
|
window_sq = window.square().expand(1, T, -1).transpose(1, 2) |
|
window_envelope = torch.nn.functional.fold( |
|
window_sq, |
|
output_size=(1, output_size), |
|
kernel_size=(1, self.win_length), |
|
stride=(1, self.hop_length), |
|
).squeeze()[pad:-pad] |
|
|
|
|
|
assert (window_envelope > 1e-11).all() |
|
y = y / window_envelope |
|
|
|
return y |
|
|
|
|
|
|
|
|
|
|
|
|
|
class ASPResBlock(torch.nn.Module): |
|
def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super(ASPResBlock, self).__init__() |
|
self.cfg = cfg |
|
self.convs1 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]), |
|
) |
|
), |
|
] |
|
) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
] |
|
) |
|
self.convs2.apply(init_weights) |
|
|
|
def forward(self, x): |
|
for c1, c2 in zip(self.convs1, self.convs2): |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c1(xt) |
|
xt = F.leaky_relu(xt, LRELU_SLOPE) |
|
xt = c2(xt) |
|
x = xt + x |
|
return x |
|
|
|
|
|
class PSPResBlock(torch.nn.Module): |
|
def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3, 5)): |
|
super(PSPResBlock, self).__init__() |
|
self.cfg = cfg |
|
self.convs1 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]), |
|
) |
|
), |
|
] |
|
) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
] |
|
) |
|
self.convs2.apply(init_weights) |
|
|
|
def forward(self, x): |
|
for c1, c2 in zip(self.convs1, self.convs2): |
|
xt = F.leaky_relu(x, LRELU_SLOPE) |
|
xt = c1(xt) |
|
xt = F.leaky_relu(xt, LRELU_SLOPE) |
|
xt = c2(xt) |
|
x = xt + x |
|
return x |
|
|
|
|
|
class APNet(torch.nn.Module): |
|
def __init__(self, cfg): |
|
super(APNet, self).__init__() |
|
self.cfg = cfg |
|
self.ASP_num_kernels = len(cfg.model.apnet.ASP_resblock_kernel_sizes) |
|
self.PSP_num_kernels = len(cfg.model.apnet.PSP_resblock_kernel_sizes) |
|
|
|
self.ASP_input_conv = weight_norm( |
|
Conv1d( |
|
cfg.preprocess.n_mel, |
|
cfg.model.apnet.ASP_channel, |
|
cfg.model.apnet.ASP_input_conv_kernel_size, |
|
1, |
|
padding=get_padding(cfg.model.apnet.ASP_input_conv_kernel_size, 1), |
|
) |
|
) |
|
self.PSP_input_conv = weight_norm( |
|
Conv1d( |
|
cfg.preprocess.n_mel, |
|
cfg.model.apnet.PSP_channel, |
|
cfg.model.apnet.PSP_input_conv_kernel_size, |
|
1, |
|
padding=get_padding(cfg.model.apnet.PSP_input_conv_kernel_size, 1), |
|
) |
|
) |
|
|
|
self.ASP_ResNet = nn.ModuleList() |
|
for j, (k, d) in enumerate( |
|
zip( |
|
cfg.model.apnet.ASP_resblock_kernel_sizes, |
|
cfg.model.apnet.ASP_resblock_dilation_sizes, |
|
) |
|
): |
|
self.ASP_ResNet.append(ASPResBlock(cfg, cfg.model.apnet.ASP_channel, k, d)) |
|
|
|
self.PSP_ResNet = nn.ModuleList() |
|
for j, (k, d) in enumerate( |
|
zip( |
|
cfg.model.apnet.PSP_resblock_kernel_sizes, |
|
cfg.model.apnet.PSP_resblock_dilation_sizes, |
|
) |
|
): |
|
self.PSP_ResNet.append(PSPResBlock(cfg, cfg.model.apnet.PSP_channel, k, d)) |
|
|
|
self.ASP_output_conv = weight_norm( |
|
Conv1d( |
|
cfg.model.apnet.ASP_channel, |
|
cfg.preprocess.n_fft // 2 + 1, |
|
cfg.model.apnet.ASP_output_conv_kernel_size, |
|
1, |
|
padding=get_padding(cfg.model.apnet.ASP_output_conv_kernel_size, 1), |
|
) |
|
) |
|
self.PSP_output_R_conv = weight_norm( |
|
Conv1d( |
|
cfg.model.apnet.PSP_channel, |
|
cfg.preprocess.n_fft // 2 + 1, |
|
cfg.model.apnet.PSP_output_R_conv_kernel_size, |
|
1, |
|
padding=get_padding(cfg.model.apnet.PSP_output_R_conv_kernel_size, 1), |
|
) |
|
) |
|
self.PSP_output_I_conv = weight_norm( |
|
Conv1d( |
|
cfg.model.apnet.PSP_channel, |
|
cfg.preprocess.n_fft // 2 + 1, |
|
cfg.model.apnet.PSP_output_I_conv_kernel_size, |
|
1, |
|
padding=get_padding(cfg.model.apnet.PSP_output_I_conv_kernel_size, 1), |
|
) |
|
) |
|
|
|
self.iSTFT = ISTFT( |
|
self.cfg.preprocess.n_fft, |
|
hop_length=self.cfg.preprocess.hop_size, |
|
win_length=self.cfg.preprocess.win_size, |
|
) |
|
|
|
self.ASP_output_conv.apply(init_weights) |
|
self.PSP_output_R_conv.apply(init_weights) |
|
self.PSP_output_I_conv.apply(init_weights) |
|
|
|
def forward(self, mel): |
|
logamp = self.ASP_input_conv(mel) |
|
logamps = None |
|
for j in range(self.ASP_num_kernels): |
|
if logamps is None: |
|
logamps = self.ASP_ResNet[j](logamp) |
|
else: |
|
logamps += self.ASP_ResNet[j](logamp) |
|
logamp = logamps / self.ASP_num_kernels |
|
logamp = F.leaky_relu(logamp) |
|
logamp = self.ASP_output_conv(logamp) |
|
|
|
pha = self.PSP_input_conv(mel) |
|
phas = None |
|
for j in range(self.PSP_num_kernels): |
|
if phas is None: |
|
phas = self.PSP_ResNet[j](pha) |
|
else: |
|
phas += self.PSP_ResNet[j](pha) |
|
pha = phas / self.PSP_num_kernels |
|
pha = F.leaky_relu(pha) |
|
R = self.PSP_output_R_conv(pha) |
|
I = self.PSP_output_I_conv(pha) |
|
|
|
pha = torch.atan2(I, R) |
|
|
|
rea = torch.exp(logamp) * torch.cos(pha) |
|
imag = torch.exp(logamp) * torch.sin(pha) |
|
|
|
spec = torch.cat((rea.unsqueeze(-1), imag.unsqueeze(-1)), -1) |
|
|
|
spec = torch.view_as_complex(spec) |
|
|
|
audio = self.iSTFT.forward( |
|
spec, torch.hann_window(self.cfg.preprocess.win_size).to(mel.device) |
|
) |
|
|
|
return logamp, pha, rea, imag, audio.unsqueeze(1) |
|
|