|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
import torch.nn as nn |
|
|
|
from torch.nn import Conv1d, ConvTranspose1d |
|
from torch.nn.utils import weight_norm, remove_weight_norm |
|
|
|
from modules.vocoder_blocks import * |
|
from modules.activation_functions import * |
|
from modules.anti_aliasing import * |
|
|
|
LRELU_SLOPE = 0.1 |
|
|
|
|
|
|
|
|
|
|
|
class AMPBlock1(torch.nn.Module): |
|
def __init__( |
|
self, cfg, channels, kernel_size=3, dilation=(1, 3, 5), activation=None |
|
): |
|
super(AMPBlock1, self).__init__() |
|
self.cfg = cfg |
|
|
|
self.convs1 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]), |
|
) |
|
), |
|
] |
|
) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1), |
|
) |
|
), |
|
] |
|
) |
|
self.convs2.apply(init_weights) |
|
|
|
self.num_layers = len(self.convs1) + len( |
|
self.convs2 |
|
) |
|
|
|
if ( |
|
activation == "snake" |
|
): |
|
self.activations = nn.ModuleList( |
|
[ |
|
Activation1d( |
|
activation=Snake( |
|
channels, alpha_logscale=cfg.model.bigvgan.snake_logscale |
|
) |
|
) |
|
for _ in range(self.num_layers) |
|
] |
|
) |
|
elif ( |
|
activation == "snakebeta" |
|
): |
|
self.activations = nn.ModuleList( |
|
[ |
|
Activation1d( |
|
activation=SnakeBeta( |
|
channels, alpha_logscale=cfg.model.bigvgan.snake_logscale |
|
) |
|
) |
|
for _ in range(self.num_layers) |
|
] |
|
) |
|
else: |
|
raise NotImplementedError( |
|
"activation incorrectly specified. check the config file and look for 'activation'." |
|
) |
|
|
|
def forward(self, x): |
|
acts1, acts2 = self.activations[::2], self.activations[1::2] |
|
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): |
|
xt = a1(x) |
|
xt = c1(xt) |
|
xt = a2(xt) |
|
xt = c2(xt) |
|
x = xt + x |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
|
|
class AMPBlock2(torch.nn.Module): |
|
def __init__(self, cfg, channels, kernel_size=3, dilation=(1, 3), activation=None): |
|
super(AMPBlock2, self).__init__() |
|
self.cfg = cfg |
|
|
|
self.convs = nn.ModuleList( |
|
[ |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]), |
|
) |
|
), |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]), |
|
) |
|
), |
|
] |
|
) |
|
self.convs.apply(init_weights) |
|
|
|
self.num_layers = len(self.convs) |
|
|
|
if ( |
|
activation == "snake" |
|
): |
|
self.activations = nn.ModuleList( |
|
[ |
|
Activation1d( |
|
activation=Snake( |
|
channels, alpha_logscale=cfg.model.bigvgan.snake_logscale |
|
) |
|
) |
|
for _ in range(self.num_layers) |
|
] |
|
) |
|
elif ( |
|
activation == "snakebeta" |
|
): |
|
self.activations = nn.ModuleList( |
|
[ |
|
Activation1d( |
|
activation=SnakeBeta( |
|
channels, alpha_logscale=cfg.model.bigvgan.snake_logscale |
|
) |
|
) |
|
for _ in range(self.num_layers) |
|
] |
|
) |
|
else: |
|
raise NotImplementedError( |
|
"activation incorrectly specified. check the config file and look for 'activation'." |
|
) |
|
|
|
def forward(self, x): |
|
for c, a in zip(self.convs, self.activations): |
|
xt = a(x) |
|
xt = c(xt) |
|
x = xt + x |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_weight_norm(l) |
|
|
|
|
|
class BigVGAN(torch.nn.Module): |
|
def __init__(self, cfg): |
|
super(BigVGAN, self).__init__() |
|
self.cfg = cfg |
|
|
|
self.num_kernels = len(cfg.model.bigvgan.resblock_kernel_sizes) |
|
self.num_upsamples = len(cfg.model.bigvgan.upsample_rates) |
|
|
|
|
|
self.conv_pre = weight_norm( |
|
Conv1d( |
|
cfg.preprocess.n_mel, |
|
cfg.model.bigvgan.upsample_initial_channel, |
|
7, |
|
1, |
|
padding=3, |
|
) |
|
) |
|
|
|
resblock = AMPBlock1 if cfg.model.bigvgan.resblock == "1" else AMPBlock2 |
|
|
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate( |
|
zip( |
|
cfg.model.bigvgan.upsample_rates, |
|
cfg.model.bigvgan.upsample_kernel_sizes, |
|
) |
|
): |
|
self.ups.append( |
|
nn.ModuleList( |
|
[ |
|
weight_norm( |
|
ConvTranspose1d( |
|
cfg.model.bigvgan.upsample_initial_channel // (2**i), |
|
cfg.model.bigvgan.upsample_initial_channel |
|
// (2 ** (i + 1)), |
|
k, |
|
u, |
|
padding=(k - u) // 2, |
|
) |
|
) |
|
] |
|
) |
|
) |
|
|
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = cfg.model.bigvgan.upsample_initial_channel // (2 ** (i + 1)) |
|
for j, (k, d) in enumerate( |
|
zip( |
|
cfg.model.bigvgan.resblock_kernel_sizes, |
|
cfg.model.bigvgan.resblock_dilation_sizes, |
|
) |
|
): |
|
self.resblocks.append( |
|
resblock(cfg, ch, k, d, activation=cfg.model.bigvgan.activation) |
|
) |
|
|
|
|
|
if cfg.model.bigvgan.activation == "snake": |
|
activation_post = Snake(ch, alpha_logscale=cfg.model.bigvgan.snake_logscale) |
|
self.activation_post = Activation1d(activation=activation_post) |
|
elif cfg.model.bigvgan.activation == "snakebeta": |
|
activation_post = SnakeBeta( |
|
ch, alpha_logscale=cfg.model.bigvgan.snake_logscale |
|
) |
|
self.activation_post = Activation1d(activation=activation_post) |
|
else: |
|
raise NotImplementedError( |
|
"activation incorrectly specified. check the config file and look for 'activation'." |
|
) |
|
|
|
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3)) |
|
|
|
|
|
for i in range(len(self.ups)): |
|
self.ups[i].apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
|
|
def forward(self, x): |
|
x = self.conv_pre(x) |
|
|
|
for i in range(self.num_upsamples): |
|
for i_up in range(len(self.ups[i])): |
|
x = self.ups[i][i_up](x) |
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
|
|
x = self.activation_post(x) |
|
x = self.conv_post(x) |
|
x = torch.tanh(x) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
print("Removing weight norm...") |
|
for l in self.ups: |
|
for l_i in l: |
|
remove_weight_norm(l_i) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
remove_weight_norm(self.conv_post) |
|
|