Spaces:
Sleeping
Sleeping
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.impute import SimpleImputer
|
6 |
+
from xgboost import XGBRegressor
|
7 |
+
from sklearn.preprocessing import LabelEncoder
|
8 |
+
from sklearn.preprocessing import StandardScaler
|
9 |
+
import joblib
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
# Load the numerical imputer
|
14 |
+
#num_imputer = joblib.load("numerical_imputer.joblib")
|
15 |
+
|
16 |
+
# Load the categorical imputer
|
17 |
+
#cat_imputer = joblib.load("categorical_imputer.joblib")
|
18 |
+
|
19 |
+
# Load the scaler
|
20 |
+
#scaler = joblib.load("scaler.joblib")
|
21 |
+
|
22 |
+
# Load the label encoder for 'family' feature
|
23 |
+
#le_family = joblib.load("le_family.joblib")
|
24 |
+
|
25 |
+
# Load the label encoder for 'holiday_type' feature
|
26 |
+
#le_holiday_type = joblib.load("le_holiday_type.joblib")
|
27 |
+
|
28 |
+
# Load the label encoder for 'city' feature
|
29 |
+
#le_city = joblib.load("le_city.joblib")
|
30 |
+
|
31 |
+
# Load the final model
|
32 |
+
regressor = joblib.load("Best_model.joblib")
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
#@st.cache_resource()
|
37 |
+
def show_predict_page():
|
38 |
+
# Add a title and subtitle
|
39 |
+
st.write("<center><h1>Predicting Sales App</h1></center>", unsafe_allow_html=True)
|
40 |
+
|
41 |
+
|
42 |
+
# Add a subtitle or description
|
43 |
+
st.write("This app predict sales by the using machine learning, based on certain input parameters. Simply enter the required information and click 'Predict' to get a sales prediction!")
|
44 |
+
|
45 |
+
st.subheader("Enter the following details to predict sales")
|
46 |
+
|
47 |
+
input_data = {
|
48 |
+
'store_nbr': st.slider("store_nbr", step=1, min_value=0, max_value=54),
|
49 |
+
'onpromotion': st.number_input("onpromotion, 0 - 800", min_value=0, max_value=800),
|
50 |
+
'transactions': st.number_input("Number of Transactions, 0 - 10000", min_value=0, max_value=10000),
|
51 |
+
'oil_price': st.number_input("oil_price, 1 - 200", step=1, min_value=0, max_value=200),
|
52 |
+
'cluster': st.slider("cluster", step=1, min_value=0, max_value=17),
|
53 |
+
'day': st.slider("day", 1, 31, 1),
|
54 |
+
'year': st.selectbox("year", [1970]),
|
55 |
+
'month': st.slider("month", 1, 12, 1),
|
56 |
+
#'dayofmonth': st.slider("dayofmonth", 1, 31, 1),
|
57 |
+
#'dayofweek': st.slider("dayofweek, 0=Sun and 6=Sat", step=1, min_value=1, max_value=6),
|
58 |
+
'family': st.selectbox("products", ['AUTOMOTIVE', 'Personal Care', 'Beverages', 'STATIONERY', 'Food', 'CLEANING', 'HARDWARE', 'Home and Kitchen', 'Clothing', 'PET SUPPLIES', 'ELECTRONICS']),
|
59 |
+
'holiday_type': st.selectbox("holiday_type", ['Workday', 'holiday']),
|
60 |
+
'city': st.selectbox("City", ['Salinas', 'Quito', 'Cayambe', 'Latacunga', 'Riobamba', 'Ibarra', 'Santo Domingo', 'Guaranda', 'Ambato', 'Guayaquil', 'Daule', 'Babahoyo', 'Quevedo', 'Playas', 'Cuenca', 'Loja', 'Machala', 'Esmeraldas', 'El Carmen', 'Libertad', 'Manta', 'Puyo'])
|
61 |
+
}
|
62 |
+
|
63 |
+
# Create a button to make a prediction
|
64 |
+
|
65 |
+
if st.button("Predict", key="predict_button", help="Click to make a prediction."):
|
66 |
+
# Convert the input data to a pandas DataFrame
|
67 |
+
input_df = pd.DataFrame([input_data])
|
68 |
+
|
69 |
+
|
70 |
+
# Selecting categorical and numerical columns separately
|
71 |
+
# cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
|
72 |
+
# num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
|
73 |
+
|
74 |
+
|
75 |
+
# Apply the imputers
|
76 |
+
# input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
|
77 |
+
# input_df_imputed_num = num_imputer.transform(input_df[num_columns])
|
78 |
+
|
79 |
+
# Convert the NumPy arrays to DataFrames
|
80 |
+
# input_df_imputed_cat = pd.DataFrame(input_df_imputed_cat, columns=cat_columns)
|
81 |
+
# input_df_imputed_num = pd.DataFrame(input_df_imputed_num, columns=num_columns)
|
82 |
+
|
83 |
+
|
84 |
+
# Scale the numerical columns
|
85 |
+
# input_df_scaled = scaler.transform(input_df_imputed_num)
|
86 |
+
# input_scaled_df = pd.DataFrame(input_df_scaled , columns = num_columns)
|
87 |
+
|
88 |
+
# input_df_imputed = pd.concat([input_df_imputed_cat, input_scaled_df], axis=1)
|
89 |
+
|
90 |
+
# Encode the categorical columns
|
91 |
+
# Encode the categorical columns
|
92 |
+
# input_df_imputed['family'] = le_family.transform(input_df_imputed['family'])
|
93 |
+
# input_df_imputed['holiday_type'] = le_holiday_type.transform(input_df_imputed['holiday_type'])
|
94 |
+
# input_df_imputed['city'] = le_city.transform(input_df_imputed['city'])
|
95 |
+
|
96 |
+
|
97 |
+
#input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat))
|
98 |
+
#input_encoded_df.columns = input_encoded_df.columns.astype(str)
|
99 |
+
|
100 |
+
|
101 |
+
#joining the cat encoded and num scaled
|
102 |
+
# final_df = input_df_imputed
|
103 |
+
|
104 |
+
# Make a prediction
|
105 |
+
prediction = round(regressor.predict(input_df)[0], 2)
|
106 |
+
|
107 |
+
|
108 |
+
# Display the prediction
|
109 |
+
#st.write(f"The predicted sales are: {prediction}.")
|
110 |
+
|
111 |
+
# Display the prediction
|
112 |
+
st.subheader("Sales Prediction")
|
113 |
+
st.write("The predicted sales for the company is:", prediction)
|