cointegrated's picture
add quality feedback
51fb7cc
raw
history blame
7.05 kB
import gradio as gr
import torch
import numpy as np
import fasttext
import os
import urllib
from transformers import MBartForConditionalGeneration, MBart50Tokenizer
MODEL_URL_MYV_MUL = 'slone/mbart-large-51-myv-mul-v1'
MODEL_URL_MUL_MYV = 'slone/mbart-large-51-mul-myv-v1'
MODEL_URL_LANGID = 'https://huggingface.co/slone/fastText-LID-323/resolve/main/lid.323.ftz'
MODEL_PATH_LANGID = 'lid.323.ftz'
HF_TOKEN = os.getenv('HF_TOKEN')
hf_writer = gr.HuggingFaceDatasetSaver(
HF_TOKEN,
dataset_name="myv-translation-2022-demo-flags",
private=True,
)
lang_to_code = {
'Эрзянь | Erzya': 'myv_XX',
'Русский | Рузонь | Russian': 'ru_RU',
'Suomi | Суоминь | Finnish': 'fi_FI',
'Deutsch | Немецень | German': 'de_DE',
'Español | Испанонь | Spanish': 'es_XX',
'English | Англань ': 'en_XX',
'हिन्दी | Хинди | Hindi': 'hi_IN',
'漢語 | Китаень | Chinese': 'zh_CN',
'Türkçe | Турконь | Turkish': 'tr_TR',
'Українська | Украинань | Ukrainian': 'uk_UA',
'Français | Французонь | French': 'fr_XX',
'العربية | Арабонь | Arabic': 'ar_AR',
}
def fix_tokenizer(tokenizer, extra_lang='myv_XX'):
"""Add a new language id to a MBART 50 tokenizer (because it is not serialized) and shift the mask token id."""
old_len = len(tokenizer) - int(extra_lang in tokenizer.added_tokens_encoder)
tokenizer.lang_code_to_id[extra_lang] = old_len-1
tokenizer.id_to_lang_code[old_len-1] = extra_lang
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
if extra_lang not in tokenizer._additional_special_tokens:
tokenizer._additional_special_tokens.append(extra_lang)
tokenizer.added_tokens_encoder = {}
def translate(
text, model, tokenizer,
src='ru_RU',
trg='myv_XX',
max_length='auto',
num_beams=3,
repetition_penalty=5.0,
train_mode=False, n_out=None,
**kwargs
):
tokenizer.src_lang = src
encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
if max_length == 'auto':
max_length = int(32 + 1.5 * encoded.input_ids.shape[1])
if train_mode:
model.train()
else:
model.eval()
generated_tokens = model.generate(
**encoded.to(model.device),
forced_bos_token_id=tokenizer.lang_code_to_id[trg],
max_length=max_length,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
# early_stopping=True,
num_return_sequences=n_out or 1,
**kwargs
)
out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
if isinstance(text, str) and n_out is None:
return out[0]
return out
def translate_rerank(
text, model, tokenizer,
src='ru_RU', trg='myv_XX', max_length='auto', num_beams=3, repetition_penalty=5.0, train_mode=False,
n=5, diversity_penalty=3.0, lang='myv', max_score=0.3, order_penalty=0.01,
verbose=False,
**kwargs
):
texts = translate(
text, model, tokenizer, src, trg,
max_length=max_length, train_mode=train_mode, repetition_penalty=repetition_penalty,
num_beams=n,
num_beam_groups=n,
diversity_penalty=diversity_penalty,
n_out=n,
**kwargs
)
scores = [get_mean_lang_score(t, lang=lang, max_score=max_score) for t in texts]
pen_scores = scores - order_penalty * np.arange(n)
if verbose:
print(texts)
print(scores)
print(pen_scores)
return texts[np.argmax(pen_scores)]
def get_mean_lang_score(text, lang='myv', k=300, max_score=0.3):
words = text.split() + [text]
res = []
for langs, scores in zip(*langid_model.predict(words, k=k)):
d = dict(zip([l[9:] for l in langs], scores))
score = min(d.get(lang, 0), max_score) / max_score
res.append(score)
# print(res)
return np.mean(res)
def translate_wrapper(text, src, trg):
src = lang_to_code.get(src)
trg = lang_to_code.get(trg)
if src == trg:
return 'Please choose two different languages'
if src == 'myv_XX':
model = model_myv_mul
elif trg == 'myv_XX':
model = model_mul_myv
else:
return 'Please translate to or from Erzya'
print(text, src, trg)
fn = translate_rerank if trg == 'myv_XX' else translate
result = fn(
text=text,
model=model,
tokenizer=tokenizer,
src=src,
trg=trg,
)
return result
article = """
Те васенце автоматической ютавтыця ютавтыця эрзянь кельсэ. Тонакстнэ улить статьясо (курок сы).
Это первый автоматический переводчик для эрзянского языка. Подробности – в статье (скоро выйдет).
Пожалуйста, оставляйте своё мнение о качестве переводов с помощью кнопок с эмодзи!
This is the first automatic translator for the Erzya language. The details are in the paper (will be published soon).
Please leave your feedback about the quality of translations using the buttons with emojis.
The code and models for translation can be found in the repository: https://github.com/slone-nlp/myv-nmt.
"""
interface = gr.Interface(
translate_wrapper,
[
gr.Textbox(label="Text / текстэнь", lines=2, placeholder='text to translate / текстэнь ютавтозь '),
gr.Dropdown(list(lang_to_code.keys()), type="value", label='source language / васень келесь', value=list(lang_to_code.keys())[0]),
gr.Dropdown(list(lang_to_code.keys()), type="value", label='target language / эряви келесь', value=list(lang_to_code.keys())[1]),
],
"text",
allow_flagging="manual",
flagging_options=["good 🙂", "50/50 😐", "bad 🙁"],
flagging_callback=hf_writer,
title='Эрзянь ютавтыця | Эрзянский переводчик | Erzya translator',
article=article,
)
if __name__ == '__main__':
model_mul_myv = MBartForConditionalGeneration.from_pretrained(MODEL_URL_MUL_MYV)
model_myv_mul = MBartForConditionalGeneration.from_pretrained(MODEL_URL_MYV_MUL)
if torch.cuda.is_available():
model_mul_myv.cuda()
model_myv_mul.cuda()
tokenizer = MBart50Tokenizer.from_pretrained(MODEL_URL_MYV_MUL)
fix_tokenizer(tokenizer)
if not os.path.exists(MODEL_PATH_LANGID):
print('downloading LID model...')
urllib.request.urlretrieve(MODEL_URL_LANGID, MODEL_PATH_LANGID)
langid_model = fasttext.load_model(MODEL_PATH_LANGID)
interface.launch()