Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM | |
MODEL_URL = 'slone/nllb-rus-tyv-v2-extvoc' | |
lang_to_code = { | |
'Орус | Русский | Russian': 'rus_Cyrl', | |
'Тыва | Тувинский | Tyvan': 'tyv_Cyrl', | |
} | |
def fix_tokenizer(tokenizer, new_lang='tyv_Cyrl'): | |
""" Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """ | |
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder) | |
tokenizer.lang_code_to_id[new_lang] = old_len-1 | |
tokenizer.id_to_lang_code[old_len-1] = new_lang | |
# always move "mask" to the last position | |
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset | |
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id) | |
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()} | |
if new_lang not in tokenizer._additional_special_tokens: | |
tokenizer._additional_special_tokens.append(new_lang) | |
# clear the added token encoder; otherwise a new token may end up there by mistake | |
tokenizer.added_tokens_encoder = {} | |
tokenizer.added_tokens_decoder = {} | |
def translate( | |
text, | |
model, | |
tokenizer, | |
src_lang='rus_Cyrl', | |
tgt_lang='tyv_Cyrl', | |
max_length='auto', | |
num_beams=4, | |
no_repeat_ngram_size=4, | |
n_out=None, | |
**kwargs | |
): | |
tokenizer.src_lang = src_lang | |
encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) | |
if max_length == 'auto': | |
max_length = int(32 + 2.0 * encoded.input_ids.shape[1]) | |
model.eval() | |
generated_tokens = model.generate( | |
**encoded.to(model.device), | |
forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], | |
max_length=max_length, | |
num_beams=num_beams, | |
no_repeat_ngram_size=no_repeat_ngram_size, | |
num_return_sequences=n_out or 1, | |
**kwargs | |
) | |
out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) | |
if isinstance(text, str) and n_out is None: | |
return out[0] | |
return out | |
def translate_wrapper(text, src, trg, random=False): | |
src_lang = lang_to_code.get(src) | |
tgt_lang = lang_to_code.get(trg) | |
# if src == trg: | |
# return 'Please choose two different languages' | |
result = translate( | |
text=text, | |
model=model, | |
tokenizer=tokenizer, | |
src_lang=src_lang, | |
tgt_lang=tgt_lang, | |
do_sample=random, | |
num_beams=1 if random else 4, | |
) | |
return result | |
article = """ | |
This is a NLLB-200-600M model fine-tuned for translation between Russian and Tyvan (Tuvan) languages, | |
using the data from https://tyvan.ru/. | |
**More details will be published soon!** | |
__Please translate one sentence at a time; the model is not working adequately with multiple sentences!__ | |
""" | |
interface = gr.Interface( | |
translate_wrapper, | |
[ | |
gr.Textbox(label="Text", lines=2, placeholder='text to translate '), | |
gr.Dropdown(list(lang_to_code.keys()), type="value", label='source language', value=list(lang_to_code.keys())[0]), | |
gr.Dropdown(list(lang_to_code.keys()), type="value", label='target language', value=list(lang_to_code.keys())[1]), | |
gr.Checkbox(label="random", value=False), | |
], | |
"text", | |
title='Tyvan-Russian translaton', | |
article=article, | |
) | |
if __name__ == '__main__': | |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL) | |
if torch.cuda.is_available(): | |
model.cuda() | |
tokenizer = NllbTokenizer.from_pretrained(MODEL_URL, force_download=True) | |
fix_tokenizer(tokenizer) | |
interface.launch() | |