from threading import Thread from typing import Iterator import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer model_id = "meta-llama/Llama-2-7b-chat-hf" if torch.cuda.is_available(): model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") else: model = None tokenizer = AutoTokenizer.from_pretrained(model_id) def get_prompt(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> str: texts = [f"[INST] <>\n{system_prompt}\n<>\n\n"] # The first user input is _not_ stripped do_strip = False for user_input, response in chat_history: user_input = user_input.strip() if do_strip else user_input do_strip = True texts.append(f"{user_input} [/INST] {response.strip()} [INST] ") message = message.strip() if do_strip else message texts.append(f"{message} [/INST]") return "".join(texts) def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int: prompt = get_prompt(message, chat_history, system_prompt) input_ids = tokenizer([prompt], return_tensors="np", add_special_tokens=False)["input_ids"] return input_ids.shape[-1] def run( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.8, top_p: float = 0.95, top_k: int = 50, ) -> Iterator[str]: prompt = get_prompt(message, chat_history, system_prompt) inputs = tokenizer([prompt], return_tensors="pt", add_special_tokens=False).to("cuda") streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, eos_token_id=tokenizer.eos_token_id, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs)