Spaces:
Running
on
Zero
Running
on
Zero
zhiweili
commited on
Commit
·
304cdbb
1
Parent(s):
c823534
add control net
Browse files- app_haircolor_inpaint_15.py +44 -5
app_haircolor_inpaint_15.py
CHANGED
@@ -10,10 +10,20 @@ from segment_utils import(
|
|
10 |
restore_result,
|
11 |
)
|
12 |
from diffusers import (
|
13 |
-
|
|
|
|
|
|
|
14 |
EulerAncestralDiscreteScheduler,
|
15 |
)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
18 |
BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-inpainting"
|
19 |
# BASE_MODEL = "SG161222/Realistic_Vision_V2.0"
|
@@ -25,12 +35,34 @@ DEFAULT_NEGATIVE_PROMPT = "worst quality, normal quality, low quality, low res,
|
|
25 |
|
26 |
DEFAULT_CATEGORY = "hair"
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
BASE_MODEL,
|
30 |
torch_dtype=torch.float16,
|
31 |
# use_safetensors=True,
|
|
|
32 |
)
|
33 |
-
|
34 |
basepipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(basepipeline.scheduler.config)
|
35 |
|
36 |
basepipeline = basepipeline.to(DEVICE)
|
@@ -52,6 +84,11 @@ def image_to_image(
|
|
52 |
run_task_time = 0
|
53 |
time_cost_str = ''
|
54 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
57 |
generated_image = basepipeline(
|
@@ -60,10 +97,12 @@ def image_to_image(
|
|
60 |
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
61 |
image=input_image,
|
62 |
mask_image=mask_image,
|
|
|
63 |
height=generate_size,
|
64 |
width=generate_size,
|
65 |
guidance_scale=guidance_scale,
|
66 |
num_inference_steps=num_steps,
|
|
|
67 |
).images[0]
|
68 |
|
69 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
@@ -103,8 +142,8 @@ def create_demo() -> gr.Blocks:
|
|
103 |
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
|
104 |
with gr.Column():
|
105 |
with gr.Accordion("Advanced Options", open=False):
|
106 |
-
cond_scale1 = gr.Slider(minimum=0, maximum=3, value=1, step=0.1, label="Cond Scale1")
|
107 |
-
cond_scale2 = gr.Slider(minimum=0, maximum=3, value=
|
108 |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
109 |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
110 |
seed = gr.Number(label="Seed", value=8)
|
|
|
10 |
restore_result,
|
11 |
)
|
12 |
from diffusers import (
|
13 |
+
StableDiffusionControlNetInpaintPipeline,
|
14 |
+
ControlNetModel,
|
15 |
+
DDIMScheduler,
|
16 |
+
DPMSolverMultistepScheduler,
|
17 |
EulerAncestralDiscreteScheduler,
|
18 |
)
|
19 |
|
20 |
+
from controlnet_aux import (
|
21 |
+
CannyDetector,
|
22 |
+
LineartDetector,
|
23 |
+
PidiNetDetector,
|
24 |
+
HEDdetector,
|
25 |
+
)
|
26 |
+
|
27 |
# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
28 |
BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-inpainting"
|
29 |
# BASE_MODEL = "SG161222/Realistic_Vision_V2.0"
|
|
|
35 |
|
36 |
DEFAULT_CATEGORY = "hair"
|
37 |
|
38 |
+
canny_detector = CannyDetector()
|
39 |
+
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
40 |
+
lineart_detector = lineart_detector.to(DEVICE)
|
41 |
+
|
42 |
+
pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
|
43 |
+
pidiNet_detector = pidiNet_detector.to(DEVICE)
|
44 |
+
|
45 |
+
hed_detector = HEDdetector.from_pretrained('lllyasviel/Annotators')
|
46 |
+
hed_detector = hed_detector.to(DEVICE)
|
47 |
+
|
48 |
+
controlnet = [
|
49 |
+
ControlNetModel.from_pretrained(
|
50 |
+
"lllyasviel/control_v11p_sd15_lineart",
|
51 |
+
torch_dtype=torch.float16,
|
52 |
+
),
|
53 |
+
ControlNetModel.from_pretrained(
|
54 |
+
"lllyasviel/control_v11p_sd15_softedge",
|
55 |
+
torch_dtype=torch.float16,
|
56 |
+
),
|
57 |
+
]
|
58 |
+
|
59 |
+
basepipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
60 |
BASE_MODEL,
|
61 |
torch_dtype=torch.float16,
|
62 |
# use_safetensors=True,
|
63 |
+
controlnet=controlnet,
|
64 |
)
|
65 |
+
# basepipeline.scheduler = DDIMScheduler.from_config(basepipeline.scheduler.config)
|
66 |
basepipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(basepipeline.scheduler.config)
|
67 |
|
68 |
basepipeline = basepipeline.to(DEVICE)
|
|
|
84 |
run_task_time = 0
|
85 |
time_cost_str = ''
|
86 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
87 |
+
# canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
|
88 |
+
lineart_image = lineart_detector(input_image, 384, generate_size)
|
89 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
90 |
+
pidiNet_image = pidiNet_detector(input_image, 512, generate_size)
|
91 |
+
control_image = [lineart_image, pidiNet_image]
|
92 |
|
93 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
94 |
generated_image = basepipeline(
|
|
|
97 |
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
98 |
image=input_image,
|
99 |
mask_image=mask_image,
|
100 |
+
control_image=control_image,
|
101 |
height=generate_size,
|
102 |
width=generate_size,
|
103 |
guidance_scale=guidance_scale,
|
104 |
num_inference_steps=num_steps,
|
105 |
+
controlnet_conditioning_scale=[cond_scale1, cond_scale2],
|
106 |
).images[0]
|
107 |
|
108 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
|
142 |
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
|
143 |
with gr.Column():
|
144 |
with gr.Accordion("Advanced Options", open=False):
|
145 |
+
cond_scale1 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Cond Scale1")
|
146 |
+
cond_scale2 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Cond Scale2")
|
147 |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
148 |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
149 |
seed = gr.Number(label="Seed", value=8)
|