zhiweili commited on
Commit
6b4da21
·
1 Parent(s): f77d828

test multi adapter

Browse files
Files changed (1) hide show
  1. app_haircolor_inpaint_adapter_15.py +25 -24
app_haircolor_inpaint_adapter_15.py CHANGED
@@ -27,6 +27,7 @@ from controlnet_aux import (
27
  )
28
 
29
  BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
 
30
 
31
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
32
 
@@ -42,26 +43,26 @@ lineart_detector = lineart_detector.to(DEVICE)
42
  pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
43
  pidiNet_detector = pidiNet_detector.to(DEVICE)
44
 
45
- # adapters = MultiAdapter(
46
- # [
47
- # T2IAdapter.from_pretrained(
48
- # "TencentARC/t2iadapter_canny_sd15v2",
49
- # torch_dtype=torch.float16,
50
- # varient="fp16",
51
- # ),
52
- # T2IAdapter.from_pretrained(
53
- # "TencentARC/t2iadapter_sketch_sd15v2",
54
- # torch_dtype=torch.float16,
55
- # varient="fp16",
56
- # ),
57
- # ]
58
- # )
59
- # adapters = adapters.to(torch.float16)
60
- adapters = T2IAdapter.from_pretrained(
61
- "TencentARC/t2iadapter_sketch_sd15v2",
62
- torch_dtype=torch.float16,
63
- varient="fp16",
64
  )
 
 
 
 
 
 
65
 
66
  basepipeline = DiffusionPipeline.from_pretrained(
67
  BASE_MODEL,
@@ -93,16 +94,16 @@ def image_to_image(
93
  time_cost_str = ''
94
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
95
  # canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
96
- # canny_image = custom_canny_detector(input_image)
97
  # lineart_image = lineart_detector(input_image, int(generate_size*1), generate_size)
98
  # run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
99
  pidiNet_image = pidiNet_detector(input_image, int(generate_size*1), generate_size)
100
  pidiNet_image = pidiNet_image.convert("L")
101
- # cond_image = [canny_image, pidiNet_image]
102
- # cond_scale = [cond_scale1, cond_scale2]
103
 
104
- cond_image = pidiNet_image
105
- cond_scale = cond_scale1
106
 
107
  generator = torch.Generator(device=DEVICE).manual_seed(seed)
108
  generated_image = basepipeline(
 
27
  )
28
 
29
  BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
30
+ # BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-inpainting"
31
 
32
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
33
 
 
43
  pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
44
  pidiNet_detector = pidiNet_detector.to(DEVICE)
45
 
46
+ adapters = MultiAdapter(
47
+ [
48
+ T2IAdapter.from_pretrained(
49
+ "TencentARC/t2iadapter_canny_sd15v2",
50
+ torch_dtype=torch.float16,
51
+ varient="fp16",
52
+ ),
53
+ T2IAdapter.from_pretrained(
54
+ "TencentARC/t2iadapter_sketch_sd15v2",
55
+ torch_dtype=torch.float16,
56
+ varient="fp16",
57
+ ),
58
+ ]
 
 
 
 
 
 
59
  )
60
+ adapters = adapters.to(torch.float16)
61
+ # adapters = T2IAdapter.from_pretrained(
62
+ # "TencentARC/t2iadapter_sketch_sd15v2",
63
+ # torch_dtype=torch.float16,
64
+ # varient="fp16",
65
+ # )
66
 
67
  basepipeline = DiffusionPipeline.from_pretrained(
68
  BASE_MODEL,
 
94
  time_cost_str = ''
95
  run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
96
  # canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
97
+ canny_image = custom_canny_detector(input_image)
98
  # lineart_image = lineart_detector(input_image, int(generate_size*1), generate_size)
99
  # run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
100
  pidiNet_image = pidiNet_detector(input_image, int(generate_size*1), generate_size)
101
  pidiNet_image = pidiNet_image.convert("L")
102
+ cond_image = [canny_image, pidiNet_image]
103
+ cond_scale = [cond_scale1, cond_scale2]
104
 
105
+ # cond_image = pidiNet_image
106
+ # cond_scale = cond_scale1
107
 
108
  generator = torch.Generator(device=DEVICE).manual_seed(seed)
109
  generated_image = basepipeline(