Spaces:
Running
on
Zero
Running
on
Zero
zhiweili
commited on
Commit
·
8219169
1
Parent(s):
1ff5892
add app_haircolor_inpainting
Browse files- app.py +1 -1
- app_haircolor.py +1 -1
- app_haircolor_inpainting.py +160 -0
- pipelines/pipeline_sdxl_adapter_inpaint.py +1834 -0
- segment_utils.py +25 -0
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from
|
4 |
|
5 |
with gr.Blocks(css="style.css") as demo:
|
6 |
with gr.Tabs():
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from app_haircolor_inpainting import create_demo as create_demo_haircolor
|
4 |
|
5 |
with gr.Blocks(css="style.css") as demo:
|
6 |
with gr.Tabs():
|
app_haircolor.py
CHANGED
@@ -19,7 +19,7 @@ from controlnet_aux import (
|
|
19 |
CannyDetector,
|
20 |
)
|
21 |
|
22 |
-
BASE_MODEL = "
|
23 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
|
25 |
DEFAULT_EDIT_PROMPT = "a woman, blue hair, high detailed"
|
|
|
19 |
CannyDetector,
|
20 |
)
|
21 |
|
22 |
+
BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
|
23 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
|
25 |
DEFAULT_EDIT_PROMPT = "a woman, blue hair, high detailed"
|
app_haircolor_inpainting.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
from segment_utils import(
|
8 |
+
segment_image_withmask,
|
9 |
+
restore_result,
|
10 |
+
)
|
11 |
+
from diffusers import (
|
12 |
+
DiffusionPipeline,
|
13 |
+
T2IAdapter,
|
14 |
+
MultiAdapter,
|
15 |
+
)
|
16 |
+
|
17 |
+
from controlnet_aux import (
|
18 |
+
LineartDetector,
|
19 |
+
CannyDetector,
|
20 |
+
)
|
21 |
+
|
22 |
+
BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
|
23 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
24 |
+
|
25 |
+
DEFAULT_EDIT_PROMPT = "a woman, blue hair, high detailed"
|
26 |
+
DEFAULT_NEGATIVE_PROMPT = "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting, poorly drawn face, bad face, fused face, ugly face, worst face, asymmetrical, unrealistic skin texture, bad proportions, out of frame, poorly drawn hands, cloned face, double face"
|
27 |
+
|
28 |
+
DEFAULT_CATEGORY = "hair"
|
29 |
+
|
30 |
+
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
|
31 |
+
lineart_detector = lineart_detector.to(DEVICE)
|
32 |
+
|
33 |
+
canndy_detector = CannyDetector()
|
34 |
+
|
35 |
+
adapters = MultiAdapter(
|
36 |
+
[
|
37 |
+
T2IAdapter.from_pretrained(
|
38 |
+
"TencentARC/t2i-adapter-lineart-sdxl-1.0",
|
39 |
+
torch_dtype=torch.float16,
|
40 |
+
varient="fp16",
|
41 |
+
),
|
42 |
+
T2IAdapter.from_pretrained(
|
43 |
+
"TencentARC/t2i-adapter-canny-sdxl-1.0",
|
44 |
+
torch_dtype=torch.float16,
|
45 |
+
varient="fp16",
|
46 |
+
),
|
47 |
+
]
|
48 |
+
)
|
49 |
+
adapters = adapters.to(torch.float16)
|
50 |
+
|
51 |
+
basepipeline = DiffusionPipeline.from_pretrained(
|
52 |
+
BASE_MODEL,
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
use_safetensors=True,
|
55 |
+
adapter=adapters,
|
56 |
+
custom_pipeline="./pipelines/pipelines/pipeline_sdxl_adapter_inpaint.py",
|
57 |
+
)
|
58 |
+
|
59 |
+
basepipeline = basepipeline.to(DEVICE)
|
60 |
+
|
61 |
+
basepipeline.enable_model_cpu_offload()
|
62 |
+
|
63 |
+
@spaces.GPU(duration=30)
|
64 |
+
def image_to_image(
|
65 |
+
input_image: Image,
|
66 |
+
mask_image: Image,
|
67 |
+
edit_prompt: str,
|
68 |
+
seed: int,
|
69 |
+
num_steps: int,
|
70 |
+
guidance_scale: float,
|
71 |
+
generate_size: int,
|
72 |
+
lineart_scale: float = 1.0,
|
73 |
+
canny_scale: float = 0.5,
|
74 |
+
):
|
75 |
+
run_task_time = 0
|
76 |
+
time_cost_str = ''
|
77 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
78 |
+
lineart_image = lineart_detector(input_image, 384, generate_size)
|
79 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
80 |
+
canny_image = canndy_detector(input_image, 384, generate_size)
|
81 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
82 |
+
|
83 |
+
cond_image = [lineart_image, canny_image]
|
84 |
+
cond_scale = [lineart_scale, canny_scale]
|
85 |
+
|
86 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
87 |
+
generated_image = basepipeline(
|
88 |
+
generator=generator,
|
89 |
+
prompt=edit_prompt,
|
90 |
+
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
|
91 |
+
image=input_image,
|
92 |
+
mask_image=mask_image,
|
93 |
+
height=generate_size,
|
94 |
+
width=generate_size,
|
95 |
+
guidance_scale=guidance_scale,
|
96 |
+
num_inference_steps=num_steps,
|
97 |
+
adapter_image=cond_image,
|
98 |
+
adapter_conditioning_scale=cond_scale,
|
99 |
+
).images[0]
|
100 |
+
|
101 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
102 |
+
|
103 |
+
return generated_image, time_cost_str
|
104 |
+
|
105 |
+
def get_time_cost(run_task_time, time_cost_str):
|
106 |
+
now_time = int(time.time()*1000)
|
107 |
+
if run_task_time == 0:
|
108 |
+
time_cost_str = 'start'
|
109 |
+
else:
|
110 |
+
if time_cost_str != '':
|
111 |
+
time_cost_str += f'-->'
|
112 |
+
time_cost_str += f'{now_time - run_task_time}'
|
113 |
+
run_task_time = now_time
|
114 |
+
return run_task_time, time_cost_str
|
115 |
+
|
116 |
+
def create_demo() -> gr.Blocks:
|
117 |
+
with gr.Blocks() as demo:
|
118 |
+
croper = gr.State()
|
119 |
+
with gr.Row():
|
120 |
+
with gr.Column():
|
121 |
+
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
|
122 |
+
generate_size = gr.Number(label="Generate Size", value=1024)
|
123 |
+
seed = gr.Number(label="Seed", value=8)
|
124 |
+
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
|
125 |
+
with gr.Column():
|
126 |
+
num_steps = gr.Slider(minimum=1, maximum=100, value=30, step=1, label="Num Steps")
|
127 |
+
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
|
128 |
+
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
129 |
+
with gr.Column():
|
130 |
+
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
131 |
+
lineart_scale = gr.Slider(minimum=0, maximum=2, value=1, step=0.1, label="Lineart Scale")
|
132 |
+
canny_scale = gr.Slider(minimum=0, maximum=2, value=0.5, step=0.1, label="Canny Scale")
|
133 |
+
g_btn = gr.Button("Edit Image")
|
134 |
+
|
135 |
+
with gr.Row():
|
136 |
+
with gr.Column():
|
137 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
138 |
+
with gr.Column():
|
139 |
+
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
|
140 |
+
with gr.Column():
|
141 |
+
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
|
142 |
+
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
|
143 |
+
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
|
144 |
+
mask_image = gr.Image(label="Mask Image", type="pil", interactive=False)
|
145 |
+
|
146 |
+
g_btn.click(
|
147 |
+
fn=segment_image_withmask,
|
148 |
+
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
|
149 |
+
outputs=[origin_area_image, mask_image, croper],
|
150 |
+
).success(
|
151 |
+
fn=image_to_image,
|
152 |
+
inputs=[origin_area_image, mask_image, edit_prompt,seed, num_steps, guidance_scale, generate_size, lineart_scale, canny_scale],
|
153 |
+
outputs=[generated_image, generated_cost],
|
154 |
+
).success(
|
155 |
+
fn=restore_result,
|
156 |
+
inputs=[croper, category, generated_image],
|
157 |
+
outputs=[restored_image],
|
158 |
+
)
|
159 |
+
|
160 |
+
return demo
|
pipelines/pipeline_sdxl_adapter_inpaint.py
ADDED
@@ -0,0 +1,1834 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import PIL.Image
|
20 |
+
import torch
|
21 |
+
from transformers import (
|
22 |
+
CLIPImageProcessor,
|
23 |
+
CLIPTextModel,
|
24 |
+
CLIPTextModelWithProjection,
|
25 |
+
CLIPTokenizer,
|
26 |
+
CLIPVisionModelWithProjection,
|
27 |
+
)
|
28 |
+
|
29 |
+
from diffusers.callbacks import (
|
30 |
+
MultiPipelineCallbacks,
|
31 |
+
PipelineCallback,
|
32 |
+
)
|
33 |
+
|
34 |
+
from diffusers.image_processor import (
|
35 |
+
PipelineImageInput,
|
36 |
+
VaeImageProcessor,
|
37 |
+
)
|
38 |
+
|
39 |
+
from diffusers.loaders import (
|
40 |
+
FromSingleFileMixin,
|
41 |
+
IPAdapterMixin,
|
42 |
+
StableDiffusionXLLoraLoaderMixin,
|
43 |
+
TextualInversionLoaderMixin,
|
44 |
+
)
|
45 |
+
|
46 |
+
from diffusers.models import (
|
47 |
+
AutoencoderKL,
|
48 |
+
ImageProjection,
|
49 |
+
MultiAdapter,
|
50 |
+
T2IAdapter,
|
51 |
+
UNet2DConditionModel,
|
52 |
+
)
|
53 |
+
|
54 |
+
from diffusers.models.attention_processor import (
|
55 |
+
AttnProcessor2_0,
|
56 |
+
XFormersAttnProcessor,
|
57 |
+
)
|
58 |
+
|
59 |
+
from diffusers.models.lora import (
|
60 |
+
adjust_lora_scale_text_encoder,
|
61 |
+
)
|
62 |
+
|
63 |
+
from diffusers.schedulers import (
|
64 |
+
KarrasDiffusionSchedulers,
|
65 |
+
)
|
66 |
+
|
67 |
+
from diffusers.utils import (
|
68 |
+
PIL_INTERPOLATION,
|
69 |
+
USE_PEFT_BACKEND,
|
70 |
+
deprecate,
|
71 |
+
is_invisible_watermark_available,
|
72 |
+
is_torch_xla_available,
|
73 |
+
logging,
|
74 |
+
replace_example_docstring,
|
75 |
+
scale_lora_layers,
|
76 |
+
unscale_lora_layers,
|
77 |
+
)
|
78 |
+
|
79 |
+
from diffusers.utils.torch_utils import (
|
80 |
+
randn_tensor,
|
81 |
+
)
|
82 |
+
|
83 |
+
from diffusers.pipelines.pipeline_utils import (
|
84 |
+
DiffusionPipeline,
|
85 |
+
StableDiffusionMixin,
|
86 |
+
)
|
87 |
+
|
88 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import (
|
89 |
+
StableDiffusionXLPipelineOutput,
|
90 |
+
)
|
91 |
+
|
92 |
+
if is_invisible_watermark_available():
|
93 |
+
from diffusers.pipelines.stable_diffusion_xl.watermark import (
|
94 |
+
StableDiffusionXLWatermarker,
|
95 |
+
)
|
96 |
+
|
97 |
+
if is_torch_xla_available():
|
98 |
+
import torch_xla.core.xla_model as xm
|
99 |
+
|
100 |
+
XLA_AVAILABLE = True
|
101 |
+
else:
|
102 |
+
XLA_AVAILABLE = False
|
103 |
+
|
104 |
+
|
105 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
106 |
+
|
107 |
+
|
108 |
+
EXAMPLE_DOC_STRING = """
|
109 |
+
Examples:
|
110 |
+
```py
|
111 |
+
>>> import torch
|
112 |
+
>>> from diffusers import StableDiffusionXLInpaintPipeline
|
113 |
+
>>> from diffusers.utils import load_image
|
114 |
+
|
115 |
+
>>> pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
|
116 |
+
... "stabilityai/stable-diffusion-xl-base-1.0",
|
117 |
+
... torch_dtype=torch.float16,
|
118 |
+
... variant="fp16",
|
119 |
+
... use_safetensors=True,
|
120 |
+
... )
|
121 |
+
>>> pipe.to("cuda")
|
122 |
+
|
123 |
+
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
124 |
+
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
125 |
+
|
126 |
+
>>> init_image = load_image(img_url).convert("RGB")
|
127 |
+
>>> mask_image = load_image(mask_url).convert("RGB")
|
128 |
+
|
129 |
+
>>> prompt = "A majestic tiger sitting on a bench"
|
130 |
+
>>> image = pipe(
|
131 |
+
... prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=50, strength=0.80
|
132 |
+
... ).images[0]
|
133 |
+
```
|
134 |
+
"""
|
135 |
+
|
136 |
+
|
137 |
+
def _preprocess_adapter_image(image, height, width):
|
138 |
+
if isinstance(image, torch.Tensor):
|
139 |
+
return image
|
140 |
+
elif isinstance(image, PIL.Image.Image):
|
141 |
+
image = [image]
|
142 |
+
|
143 |
+
if isinstance(image[0], PIL.Image.Image):
|
144 |
+
image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])) for i in image]
|
145 |
+
image = [
|
146 |
+
i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image
|
147 |
+
] # expand [h, w] or [h, w, c] to [b, h, w, c]
|
148 |
+
image = np.concatenate(image, axis=0)
|
149 |
+
image = np.array(image).astype(np.float32) / 255.0
|
150 |
+
image = image.transpose(0, 3, 1, 2)
|
151 |
+
image = torch.from_numpy(image)
|
152 |
+
elif isinstance(image[0], torch.Tensor):
|
153 |
+
if image[0].ndim == 3:
|
154 |
+
image = torch.stack(image, dim=0)
|
155 |
+
elif image[0].ndim == 4:
|
156 |
+
image = torch.cat(image, dim=0)
|
157 |
+
else:
|
158 |
+
raise ValueError(
|
159 |
+
f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}"
|
160 |
+
)
|
161 |
+
return image
|
162 |
+
|
163 |
+
|
164 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
165 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
166 |
+
"""
|
167 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
168 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
169 |
+
"""
|
170 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
171 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
172 |
+
# rescale the results from guidance (fixes overexposure)
|
173 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
174 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
175 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
176 |
+
return noise_cfg
|
177 |
+
|
178 |
+
|
179 |
+
def mask_pil_to_torch(mask, height, width):
|
180 |
+
# preprocess mask
|
181 |
+
if isinstance(mask, (PIL.Image.Image, np.ndarray)):
|
182 |
+
mask = [mask]
|
183 |
+
|
184 |
+
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
|
185 |
+
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
|
186 |
+
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
|
187 |
+
mask = mask.astype(np.float32) / 255.0
|
188 |
+
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
|
189 |
+
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
|
190 |
+
|
191 |
+
mask = torch.from_numpy(mask)
|
192 |
+
return mask
|
193 |
+
|
194 |
+
|
195 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
196 |
+
def retrieve_latents(
|
197 |
+
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
198 |
+
):
|
199 |
+
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
200 |
+
return encoder_output.latent_dist.sample(generator)
|
201 |
+
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
202 |
+
return encoder_output.latent_dist.mode()
|
203 |
+
elif hasattr(encoder_output, "latents"):
|
204 |
+
return encoder_output.latents
|
205 |
+
else:
|
206 |
+
raise AttributeError("Could not access latents of provided encoder_output")
|
207 |
+
|
208 |
+
|
209 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
210 |
+
def retrieve_timesteps(
|
211 |
+
scheduler,
|
212 |
+
num_inference_steps: Optional[int] = None,
|
213 |
+
device: Optional[Union[str, torch.device]] = None,
|
214 |
+
timesteps: Optional[List[int]] = None,
|
215 |
+
sigmas: Optional[List[float]] = None,
|
216 |
+
**kwargs,
|
217 |
+
):
|
218 |
+
"""
|
219 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
220 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
221 |
+
|
222 |
+
Args:
|
223 |
+
scheduler (`SchedulerMixin`):
|
224 |
+
The scheduler to get timesteps from.
|
225 |
+
num_inference_steps (`int`):
|
226 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
227 |
+
must be `None`.
|
228 |
+
device (`str` or `torch.device`, *optional*):
|
229 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
230 |
+
timesteps (`List[int]`, *optional*):
|
231 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
232 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
233 |
+
sigmas (`List[float]`, *optional*):
|
234 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
235 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
236 |
+
|
237 |
+
Returns:
|
238 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
239 |
+
second element is the number of inference steps.
|
240 |
+
"""
|
241 |
+
if timesteps is not None and sigmas is not None:
|
242 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
243 |
+
if timesteps is not None:
|
244 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
245 |
+
if not accepts_timesteps:
|
246 |
+
raise ValueError(
|
247 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
248 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
249 |
+
)
|
250 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
251 |
+
timesteps = scheduler.timesteps
|
252 |
+
num_inference_steps = len(timesteps)
|
253 |
+
elif sigmas is not None:
|
254 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
255 |
+
if not accept_sigmas:
|
256 |
+
raise ValueError(
|
257 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
258 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
259 |
+
)
|
260 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
261 |
+
timesteps = scheduler.timesteps
|
262 |
+
num_inference_steps = len(timesteps)
|
263 |
+
else:
|
264 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
265 |
+
timesteps = scheduler.timesteps
|
266 |
+
return timesteps, num_inference_steps
|
267 |
+
|
268 |
+
|
269 |
+
class StableDiffusionXLInpaintPipeline(
|
270 |
+
DiffusionPipeline,
|
271 |
+
StableDiffusionMixin,
|
272 |
+
TextualInversionLoaderMixin,
|
273 |
+
StableDiffusionXLLoraLoaderMixin,
|
274 |
+
FromSingleFileMixin,
|
275 |
+
IPAdapterMixin,
|
276 |
+
):
|
277 |
+
r"""
|
278 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
279 |
+
|
280 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
281 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
282 |
+
|
283 |
+
The pipeline also inherits the following loading methods:
|
284 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
285 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
286 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
287 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
288 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
289 |
+
|
290 |
+
Args:
|
291 |
+
vae ([`AutoencoderKL`]):
|
292 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
293 |
+
text_encoder ([`CLIPTextModel`]):
|
294 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
295 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
296 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
297 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
298 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
299 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
300 |
+
specifically the
|
301 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
302 |
+
variant.
|
303 |
+
tokenizer (`CLIPTokenizer`):
|
304 |
+
Tokenizer of class
|
305 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
306 |
+
tokenizer_2 (`CLIPTokenizer`):
|
307 |
+
Second Tokenizer of class
|
308 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
309 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
310 |
+
scheduler ([`SchedulerMixin`]):
|
311 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
312 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
313 |
+
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
314 |
+
Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
|
315 |
+
of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
316 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
317 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
318 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
319 |
+
add_watermarker (`bool`, *optional*):
|
320 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
321 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
322 |
+
watermarker will be used.
|
323 |
+
"""
|
324 |
+
|
325 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
326 |
+
|
327 |
+
_optional_components = [
|
328 |
+
"tokenizer",
|
329 |
+
"tokenizer_2",
|
330 |
+
"text_encoder",
|
331 |
+
"text_encoder_2",
|
332 |
+
"image_encoder",
|
333 |
+
"feature_extractor",
|
334 |
+
]
|
335 |
+
_callback_tensor_inputs = [
|
336 |
+
"latents",
|
337 |
+
"prompt_embeds",
|
338 |
+
"negative_prompt_embeds",
|
339 |
+
"add_text_embeds",
|
340 |
+
"add_time_ids",
|
341 |
+
"negative_pooled_prompt_embeds",
|
342 |
+
"add_neg_time_ids",
|
343 |
+
"mask",
|
344 |
+
"masked_image_latents",
|
345 |
+
]
|
346 |
+
|
347 |
+
def __init__(
|
348 |
+
self,
|
349 |
+
vae: AutoencoderKL,
|
350 |
+
text_encoder: CLIPTextModel,
|
351 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
352 |
+
tokenizer: CLIPTokenizer,
|
353 |
+
tokenizer_2: CLIPTokenizer,
|
354 |
+
unet: UNet2DConditionModel,
|
355 |
+
adapter: Union[T2IAdapter, MultiAdapter, List[T2IAdapter]],
|
356 |
+
scheduler: KarrasDiffusionSchedulers,
|
357 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
358 |
+
feature_extractor: CLIPImageProcessor = None,
|
359 |
+
requires_aesthetics_score: bool = False,
|
360 |
+
force_zeros_for_empty_prompt: bool = True,
|
361 |
+
add_watermarker: Optional[bool] = None,
|
362 |
+
):
|
363 |
+
super().__init__()
|
364 |
+
|
365 |
+
self.register_modules(
|
366 |
+
vae=vae,
|
367 |
+
text_encoder=text_encoder,
|
368 |
+
text_encoder_2=text_encoder_2,
|
369 |
+
tokenizer=tokenizer,
|
370 |
+
tokenizer_2=tokenizer_2,
|
371 |
+
unet=unet,
|
372 |
+
adapter=adapter,
|
373 |
+
image_encoder=image_encoder,
|
374 |
+
feature_extractor=feature_extractor,
|
375 |
+
scheduler=scheduler,
|
376 |
+
)
|
377 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
378 |
+
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
379 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
380 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
381 |
+
self.mask_processor = VaeImageProcessor(
|
382 |
+
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
383 |
+
)
|
384 |
+
|
385 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
386 |
+
|
387 |
+
if add_watermarker:
|
388 |
+
self.watermark = StableDiffusionXLWatermarker()
|
389 |
+
else:
|
390 |
+
self.watermark = None
|
391 |
+
|
392 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
393 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
394 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
395 |
+
|
396 |
+
if not isinstance(image, torch.Tensor):
|
397 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
398 |
+
|
399 |
+
image = image.to(device=device, dtype=dtype)
|
400 |
+
if output_hidden_states:
|
401 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
402 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
403 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
404 |
+
torch.zeros_like(image), output_hidden_states=True
|
405 |
+
).hidden_states[-2]
|
406 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
407 |
+
num_images_per_prompt, dim=0
|
408 |
+
)
|
409 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
410 |
+
else:
|
411 |
+
image_embeds = self.image_encoder(image).image_embeds
|
412 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
413 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
414 |
+
|
415 |
+
return image_embeds, uncond_image_embeds
|
416 |
+
|
417 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
418 |
+
def prepare_ip_adapter_image_embeds(
|
419 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
420 |
+
):
|
421 |
+
image_embeds = []
|
422 |
+
if do_classifier_free_guidance:
|
423 |
+
negative_image_embeds = []
|
424 |
+
if ip_adapter_image_embeds is None:
|
425 |
+
if not isinstance(ip_adapter_image, list):
|
426 |
+
ip_adapter_image = [ip_adapter_image]
|
427 |
+
|
428 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
429 |
+
raise ValueError(
|
430 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
431 |
+
)
|
432 |
+
|
433 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
434 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
435 |
+
):
|
436 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
437 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
438 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
439 |
+
)
|
440 |
+
|
441 |
+
image_embeds.append(single_image_embeds[None, :])
|
442 |
+
if do_classifier_free_guidance:
|
443 |
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
444 |
+
else:
|
445 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
446 |
+
if do_classifier_free_guidance:
|
447 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
448 |
+
negative_image_embeds.append(single_negative_image_embeds)
|
449 |
+
image_embeds.append(single_image_embeds)
|
450 |
+
|
451 |
+
ip_adapter_image_embeds = []
|
452 |
+
for i, single_image_embeds in enumerate(image_embeds):
|
453 |
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
454 |
+
if do_classifier_free_guidance:
|
455 |
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
456 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
457 |
+
|
458 |
+
single_image_embeds = single_image_embeds.to(device=device)
|
459 |
+
ip_adapter_image_embeds.append(single_image_embeds)
|
460 |
+
|
461 |
+
return ip_adapter_image_embeds
|
462 |
+
|
463 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
464 |
+
def encode_prompt(
|
465 |
+
self,
|
466 |
+
prompt: str,
|
467 |
+
prompt_2: Optional[str] = None,
|
468 |
+
device: Optional[torch.device] = None,
|
469 |
+
num_images_per_prompt: int = 1,
|
470 |
+
do_classifier_free_guidance: bool = True,
|
471 |
+
negative_prompt: Optional[str] = None,
|
472 |
+
negative_prompt_2: Optional[str] = None,
|
473 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
474 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
475 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
476 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
477 |
+
lora_scale: Optional[float] = None,
|
478 |
+
clip_skip: Optional[int] = None,
|
479 |
+
):
|
480 |
+
r"""
|
481 |
+
Encodes the prompt into text encoder hidden states.
|
482 |
+
|
483 |
+
Args:
|
484 |
+
prompt (`str` or `List[str]`, *optional*):
|
485 |
+
prompt to be encoded
|
486 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
487 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
488 |
+
used in both text-encoders
|
489 |
+
device: (`torch.device`):
|
490 |
+
torch device
|
491 |
+
num_images_per_prompt (`int`):
|
492 |
+
number of images that should be generated per prompt
|
493 |
+
do_classifier_free_guidance (`bool`):
|
494 |
+
whether to use classifier free guidance or not
|
495 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
496 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
497 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
498 |
+
less than `1`).
|
499 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
500 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
501 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
502 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
503 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
504 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
505 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
506 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
507 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
508 |
+
argument.
|
509 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
510 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
511 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
512 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
513 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
514 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
515 |
+
input argument.
|
516 |
+
lora_scale (`float`, *optional*):
|
517 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
518 |
+
clip_skip (`int`, *optional*):
|
519 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
520 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
521 |
+
"""
|
522 |
+
device = device or self._execution_device
|
523 |
+
|
524 |
+
# set lora scale so that monkey patched LoRA
|
525 |
+
# function of text encoder can correctly access it
|
526 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
527 |
+
self._lora_scale = lora_scale
|
528 |
+
|
529 |
+
# dynamically adjust the LoRA scale
|
530 |
+
if self.text_encoder is not None:
|
531 |
+
if not USE_PEFT_BACKEND:
|
532 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
533 |
+
else:
|
534 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
535 |
+
|
536 |
+
if self.text_encoder_2 is not None:
|
537 |
+
if not USE_PEFT_BACKEND:
|
538 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
539 |
+
else:
|
540 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
541 |
+
|
542 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
543 |
+
|
544 |
+
if prompt is not None:
|
545 |
+
batch_size = len(prompt)
|
546 |
+
else:
|
547 |
+
batch_size = prompt_embeds.shape[0]
|
548 |
+
|
549 |
+
# Define tokenizers and text encoders
|
550 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
551 |
+
text_encoders = (
|
552 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
553 |
+
)
|
554 |
+
|
555 |
+
if prompt_embeds is None:
|
556 |
+
prompt_2 = prompt_2 or prompt
|
557 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
558 |
+
|
559 |
+
# textual inversion: process multi-vector tokens if necessary
|
560 |
+
prompt_embeds_list = []
|
561 |
+
prompts = [prompt, prompt_2]
|
562 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
563 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
564 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
565 |
+
|
566 |
+
text_inputs = tokenizer(
|
567 |
+
prompt,
|
568 |
+
padding="max_length",
|
569 |
+
max_length=tokenizer.model_max_length,
|
570 |
+
truncation=True,
|
571 |
+
return_tensors="pt",
|
572 |
+
)
|
573 |
+
|
574 |
+
text_input_ids = text_inputs.input_ids
|
575 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
576 |
+
|
577 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
578 |
+
text_input_ids, untruncated_ids
|
579 |
+
):
|
580 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
581 |
+
logger.warning(
|
582 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
583 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
584 |
+
)
|
585 |
+
|
586 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
587 |
+
|
588 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
589 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
590 |
+
if clip_skip is None:
|
591 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
592 |
+
else:
|
593 |
+
# "2" because SDXL always indexes from the penultimate layer.
|
594 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
595 |
+
|
596 |
+
prompt_embeds_list.append(prompt_embeds)
|
597 |
+
|
598 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
599 |
+
|
600 |
+
# get unconditional embeddings for classifier free guidance
|
601 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
602 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
603 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
604 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
605 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
606 |
+
negative_prompt = negative_prompt or ""
|
607 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
608 |
+
|
609 |
+
# normalize str to list
|
610 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
611 |
+
negative_prompt_2 = (
|
612 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
613 |
+
)
|
614 |
+
|
615 |
+
uncond_tokens: List[str]
|
616 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
617 |
+
raise TypeError(
|
618 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
619 |
+
f" {type(prompt)}."
|
620 |
+
)
|
621 |
+
elif batch_size != len(negative_prompt):
|
622 |
+
raise ValueError(
|
623 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
624 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
625 |
+
" the batch size of `prompt`."
|
626 |
+
)
|
627 |
+
else:
|
628 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
629 |
+
|
630 |
+
negative_prompt_embeds_list = []
|
631 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
632 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
633 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
634 |
+
|
635 |
+
max_length = prompt_embeds.shape[1]
|
636 |
+
uncond_input = tokenizer(
|
637 |
+
negative_prompt,
|
638 |
+
padding="max_length",
|
639 |
+
max_length=max_length,
|
640 |
+
truncation=True,
|
641 |
+
return_tensors="pt",
|
642 |
+
)
|
643 |
+
|
644 |
+
negative_prompt_embeds = text_encoder(
|
645 |
+
uncond_input.input_ids.to(device),
|
646 |
+
output_hidden_states=True,
|
647 |
+
)
|
648 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
649 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
650 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
651 |
+
|
652 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
653 |
+
|
654 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
655 |
+
|
656 |
+
if self.text_encoder_2 is not None:
|
657 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
658 |
+
else:
|
659 |
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
660 |
+
|
661 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
662 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
663 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
664 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
665 |
+
|
666 |
+
if do_classifier_free_guidance:
|
667 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
668 |
+
seq_len = negative_prompt_embeds.shape[1]
|
669 |
+
|
670 |
+
if self.text_encoder_2 is not None:
|
671 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
672 |
+
else:
|
673 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
674 |
+
|
675 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
676 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
677 |
+
|
678 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
679 |
+
bs_embed * num_images_per_prompt, -1
|
680 |
+
)
|
681 |
+
if do_classifier_free_guidance:
|
682 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
683 |
+
bs_embed * num_images_per_prompt, -1
|
684 |
+
)
|
685 |
+
|
686 |
+
if self.text_encoder is not None:
|
687 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
688 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
689 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
690 |
+
|
691 |
+
if self.text_encoder_2 is not None:
|
692 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
693 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
694 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
695 |
+
|
696 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
697 |
+
|
698 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
699 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
700 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
701 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
702 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
703 |
+
# and should be between [0, 1]
|
704 |
+
|
705 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
706 |
+
extra_step_kwargs = {}
|
707 |
+
if accepts_eta:
|
708 |
+
extra_step_kwargs["eta"] = eta
|
709 |
+
|
710 |
+
# check if the scheduler accepts generator
|
711 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
712 |
+
if accepts_generator:
|
713 |
+
extra_step_kwargs["generator"] = generator
|
714 |
+
return extra_step_kwargs
|
715 |
+
|
716 |
+
def check_inputs(
|
717 |
+
self,
|
718 |
+
prompt,
|
719 |
+
prompt_2,
|
720 |
+
image,
|
721 |
+
mask_image,
|
722 |
+
height,
|
723 |
+
width,
|
724 |
+
strength,
|
725 |
+
callback_steps,
|
726 |
+
output_type,
|
727 |
+
negative_prompt=None,
|
728 |
+
negative_prompt_2=None,
|
729 |
+
prompt_embeds=None,
|
730 |
+
negative_prompt_embeds=None,
|
731 |
+
ip_adapter_image=None,
|
732 |
+
ip_adapter_image_embeds=None,
|
733 |
+
callback_on_step_end_tensor_inputs=None,
|
734 |
+
padding_mask_crop=None,
|
735 |
+
):
|
736 |
+
if strength < 0 or strength > 1:
|
737 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
738 |
+
|
739 |
+
if height % 8 != 0 or width % 8 != 0:
|
740 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
741 |
+
|
742 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
743 |
+
raise ValueError(
|
744 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
745 |
+
f" {type(callback_steps)}."
|
746 |
+
)
|
747 |
+
|
748 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
749 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
750 |
+
):
|
751 |
+
raise ValueError(
|
752 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
753 |
+
)
|
754 |
+
|
755 |
+
if prompt is not None and prompt_embeds is not None:
|
756 |
+
raise ValueError(
|
757 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
758 |
+
" only forward one of the two."
|
759 |
+
)
|
760 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
761 |
+
raise ValueError(
|
762 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
763 |
+
" only forward one of the two."
|
764 |
+
)
|
765 |
+
elif prompt is None and prompt_embeds is None:
|
766 |
+
raise ValueError(
|
767 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
768 |
+
)
|
769 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
770 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
771 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
772 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
773 |
+
|
774 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
775 |
+
raise ValueError(
|
776 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
777 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
778 |
+
)
|
779 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
780 |
+
raise ValueError(
|
781 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
782 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
783 |
+
)
|
784 |
+
|
785 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
786 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
787 |
+
raise ValueError(
|
788 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
789 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
790 |
+
f" {negative_prompt_embeds.shape}."
|
791 |
+
)
|
792 |
+
if padding_mask_crop is not None:
|
793 |
+
if not isinstance(image, PIL.Image.Image):
|
794 |
+
raise ValueError(
|
795 |
+
f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
|
796 |
+
)
|
797 |
+
if not isinstance(mask_image, PIL.Image.Image):
|
798 |
+
raise ValueError(
|
799 |
+
f"The mask image should be a PIL image when inpainting mask crop, but is of type"
|
800 |
+
f" {type(mask_image)}."
|
801 |
+
)
|
802 |
+
if output_type != "pil":
|
803 |
+
raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
|
804 |
+
|
805 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
806 |
+
raise ValueError(
|
807 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
808 |
+
)
|
809 |
+
|
810 |
+
if ip_adapter_image_embeds is not None:
|
811 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
812 |
+
raise ValueError(
|
813 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
814 |
+
)
|
815 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
816 |
+
raise ValueError(
|
817 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
818 |
+
)
|
819 |
+
|
820 |
+
def prepare_latents(
|
821 |
+
self,
|
822 |
+
batch_size,
|
823 |
+
num_channels_latents,
|
824 |
+
height,
|
825 |
+
width,
|
826 |
+
dtype,
|
827 |
+
device,
|
828 |
+
generator,
|
829 |
+
latents=None,
|
830 |
+
image=None,
|
831 |
+
timestep=None,
|
832 |
+
is_strength_max=True,
|
833 |
+
add_noise=True,
|
834 |
+
return_noise=False,
|
835 |
+
return_image_latents=False,
|
836 |
+
):
|
837 |
+
shape = (
|
838 |
+
batch_size,
|
839 |
+
num_channels_latents,
|
840 |
+
int(height) // self.vae_scale_factor,
|
841 |
+
int(width) // self.vae_scale_factor,
|
842 |
+
)
|
843 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
844 |
+
raise ValueError(
|
845 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
846 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
847 |
+
)
|
848 |
+
|
849 |
+
if (image is None or timestep is None) and not is_strength_max:
|
850 |
+
raise ValueError(
|
851 |
+
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
|
852 |
+
"However, either the image or the noise timestep has not been provided."
|
853 |
+
)
|
854 |
+
|
855 |
+
if image.shape[1] == 4:
|
856 |
+
image_latents = image.to(device=device, dtype=dtype)
|
857 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
858 |
+
elif return_image_latents or (latents is None and not is_strength_max):
|
859 |
+
image = image.to(device=device, dtype=dtype)
|
860 |
+
image_latents = self._encode_vae_image(image=image, generator=generator)
|
861 |
+
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
|
862 |
+
|
863 |
+
if latents is None and add_noise:
|
864 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
865 |
+
# if strength is 1. then initialise the latents to noise, else initial to image + noise
|
866 |
+
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
|
867 |
+
# if pure noise then scale the initial latents by the Scheduler's init sigma
|
868 |
+
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
|
869 |
+
elif add_noise:
|
870 |
+
noise = latents.to(device)
|
871 |
+
latents = noise * self.scheduler.init_noise_sigma
|
872 |
+
else:
|
873 |
+
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
874 |
+
latents = image_latents.to(device)
|
875 |
+
|
876 |
+
outputs = (latents,)
|
877 |
+
|
878 |
+
if return_noise:
|
879 |
+
outputs += (noise,)
|
880 |
+
|
881 |
+
if return_image_latents:
|
882 |
+
outputs += (image_latents,)
|
883 |
+
|
884 |
+
return outputs
|
885 |
+
|
886 |
+
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
887 |
+
dtype = image.dtype
|
888 |
+
if self.vae.config.force_upcast:
|
889 |
+
image = image.float()
|
890 |
+
self.vae.to(dtype=torch.float32)
|
891 |
+
|
892 |
+
if isinstance(generator, list):
|
893 |
+
image_latents = [
|
894 |
+
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
895 |
+
for i in range(image.shape[0])
|
896 |
+
]
|
897 |
+
image_latents = torch.cat(image_latents, dim=0)
|
898 |
+
else:
|
899 |
+
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
900 |
+
|
901 |
+
if self.vae.config.force_upcast:
|
902 |
+
self.vae.to(dtype)
|
903 |
+
|
904 |
+
image_latents = image_latents.to(dtype)
|
905 |
+
image_latents = self.vae.config.scaling_factor * image_latents
|
906 |
+
|
907 |
+
return image_latents
|
908 |
+
|
909 |
+
def prepare_mask_latents(
|
910 |
+
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
911 |
+
):
|
912 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
913 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
914 |
+
# and half precision
|
915 |
+
mask = torch.nn.functional.interpolate(
|
916 |
+
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
917 |
+
)
|
918 |
+
mask = mask.to(device=device, dtype=dtype)
|
919 |
+
|
920 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
921 |
+
if mask.shape[0] < batch_size:
|
922 |
+
if not batch_size % mask.shape[0] == 0:
|
923 |
+
raise ValueError(
|
924 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
925 |
+
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
|
926 |
+
" of masks that you pass is divisible by the total requested batch size."
|
927 |
+
)
|
928 |
+
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
|
929 |
+
|
930 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
931 |
+
|
932 |
+
if masked_image is not None and masked_image.shape[1] == 4:
|
933 |
+
masked_image_latents = masked_image
|
934 |
+
else:
|
935 |
+
masked_image_latents = None
|
936 |
+
|
937 |
+
if masked_image is not None:
|
938 |
+
if masked_image_latents is None:
|
939 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
940 |
+
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
|
941 |
+
|
942 |
+
if masked_image_latents.shape[0] < batch_size:
|
943 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
944 |
+
raise ValueError(
|
945 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
946 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
947 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
948 |
+
)
|
949 |
+
masked_image_latents = masked_image_latents.repeat(
|
950 |
+
batch_size // masked_image_latents.shape[0], 1, 1, 1
|
951 |
+
)
|
952 |
+
|
953 |
+
masked_image_latents = (
|
954 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
955 |
+
)
|
956 |
+
|
957 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
958 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
959 |
+
|
960 |
+
return mask, masked_image_latents
|
961 |
+
|
962 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
|
963 |
+
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
|
964 |
+
# get the original timestep using init_timestep
|
965 |
+
if denoising_start is None:
|
966 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
967 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
968 |
+
|
969 |
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
970 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
971 |
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
972 |
+
|
973 |
+
return timesteps, num_inference_steps - t_start
|
974 |
+
|
975 |
+
else:
|
976 |
+
# Strength is irrelevant if we directly request a timestep to start at;
|
977 |
+
# that is, strength is determined by the denoising_start instead.
|
978 |
+
discrete_timestep_cutoff = int(
|
979 |
+
round(
|
980 |
+
self.scheduler.config.num_train_timesteps
|
981 |
+
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
982 |
+
)
|
983 |
+
)
|
984 |
+
|
985 |
+
num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item()
|
986 |
+
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
|
987 |
+
# if the scheduler is a 2nd order scheduler we might have to do +1
|
988 |
+
# because `num_inference_steps` might be even given that every timestep
|
989 |
+
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
|
990 |
+
# mean that we cut the timesteps in the middle of the denoising step
|
991 |
+
# (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
|
992 |
+
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
|
993 |
+
num_inference_steps = num_inference_steps + 1
|
994 |
+
|
995 |
+
# because t_n+1 >= t_n, we slice the timesteps starting from the end
|
996 |
+
t_start = len(self.scheduler.timesteps) - num_inference_steps
|
997 |
+
timesteps = self.scheduler.timesteps[t_start:]
|
998 |
+
if hasattr(self.scheduler, "set_begin_index"):
|
999 |
+
self.scheduler.set_begin_index(t_start)
|
1000 |
+
return timesteps, num_inference_steps
|
1001 |
+
|
1002 |
+
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
|
1003 |
+
def _get_add_time_ids(
|
1004 |
+
self,
|
1005 |
+
original_size,
|
1006 |
+
crops_coords_top_left,
|
1007 |
+
target_size,
|
1008 |
+
aesthetic_score,
|
1009 |
+
negative_aesthetic_score,
|
1010 |
+
negative_original_size,
|
1011 |
+
negative_crops_coords_top_left,
|
1012 |
+
negative_target_size,
|
1013 |
+
dtype,
|
1014 |
+
text_encoder_projection_dim=None,
|
1015 |
+
):
|
1016 |
+
if self.config.requires_aesthetics_score:
|
1017 |
+
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
|
1018 |
+
add_neg_time_ids = list(
|
1019 |
+
negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
|
1020 |
+
)
|
1021 |
+
else:
|
1022 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
1023 |
+
add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
|
1024 |
+
|
1025 |
+
passed_add_embed_dim = (
|
1026 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
1027 |
+
)
|
1028 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
1029 |
+
|
1030 |
+
if (
|
1031 |
+
expected_add_embed_dim > passed_add_embed_dim
|
1032 |
+
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
1033 |
+
):
|
1034 |
+
raise ValueError(
|
1035 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
|
1036 |
+
)
|
1037 |
+
elif (
|
1038 |
+
expected_add_embed_dim < passed_add_embed_dim
|
1039 |
+
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
1040 |
+
):
|
1041 |
+
raise ValueError(
|
1042 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
|
1043 |
+
)
|
1044 |
+
elif expected_add_embed_dim != passed_add_embed_dim:
|
1045 |
+
raise ValueError(
|
1046 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
1047 |
+
)
|
1048 |
+
|
1049 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
1050 |
+
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
|
1051 |
+
|
1052 |
+
return add_time_ids, add_neg_time_ids
|
1053 |
+
|
1054 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
1055 |
+
def upcast_vae(self):
|
1056 |
+
dtype = self.vae.dtype
|
1057 |
+
self.vae.to(dtype=torch.float32)
|
1058 |
+
use_torch_2_0_or_xformers = isinstance(
|
1059 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
1060 |
+
(
|
1061 |
+
AttnProcessor2_0,
|
1062 |
+
XFormersAttnProcessor,
|
1063 |
+
),
|
1064 |
+
)
|
1065 |
+
# if xformers or torch_2_0 is used attention block does not need
|
1066 |
+
# to be in float32 which can save lots of memory
|
1067 |
+
if use_torch_2_0_or_xformers:
|
1068 |
+
self.vae.post_quant_conv.to(dtype)
|
1069 |
+
self.vae.decoder.conv_in.to(dtype)
|
1070 |
+
self.vae.decoder.mid_block.to(dtype)
|
1071 |
+
|
1072 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
1073 |
+
def get_guidance_scale_embedding(
|
1074 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
1075 |
+
) -> torch.Tensor:
|
1076 |
+
"""
|
1077 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
1078 |
+
|
1079 |
+
Args:
|
1080 |
+
w (`torch.Tensor`):
|
1081 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
1082 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
1083 |
+
Dimension of the embeddings to generate.
|
1084 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
1085 |
+
Data type of the generated embeddings.
|
1086 |
+
|
1087 |
+
Returns:
|
1088 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
1089 |
+
"""
|
1090 |
+
assert len(w.shape) == 1
|
1091 |
+
w = w * 1000.0
|
1092 |
+
|
1093 |
+
half_dim = embedding_dim // 2
|
1094 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
1095 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
1096 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
1097 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
1098 |
+
if embedding_dim % 2 == 1: # zero pad
|
1099 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
1100 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
1101 |
+
return emb
|
1102 |
+
|
1103 |
+
@property
|
1104 |
+
def guidance_scale(self):
|
1105 |
+
return self._guidance_scale
|
1106 |
+
|
1107 |
+
@property
|
1108 |
+
def guidance_rescale(self):
|
1109 |
+
return self._guidance_rescale
|
1110 |
+
|
1111 |
+
@property
|
1112 |
+
def clip_skip(self):
|
1113 |
+
return self._clip_skip
|
1114 |
+
|
1115 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1116 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1117 |
+
# corresponds to doing no classifier free guidance.
|
1118 |
+
@property
|
1119 |
+
def do_classifier_free_guidance(self):
|
1120 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
1121 |
+
|
1122 |
+
@property
|
1123 |
+
def cross_attention_kwargs(self):
|
1124 |
+
return self._cross_attention_kwargs
|
1125 |
+
|
1126 |
+
@property
|
1127 |
+
def denoising_end(self):
|
1128 |
+
return self._denoising_end
|
1129 |
+
|
1130 |
+
@property
|
1131 |
+
def denoising_start(self):
|
1132 |
+
return self._denoising_start
|
1133 |
+
|
1134 |
+
@property
|
1135 |
+
def num_timesteps(self):
|
1136 |
+
return self._num_timesteps
|
1137 |
+
|
1138 |
+
@property
|
1139 |
+
def interrupt(self):
|
1140 |
+
return self._interrupt
|
1141 |
+
|
1142 |
+
@torch.no_grad()
|
1143 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1144 |
+
def __call__(
|
1145 |
+
self,
|
1146 |
+
prompt: Union[str, List[str]] = None,
|
1147 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
1148 |
+
image: PipelineImageInput = None,
|
1149 |
+
mask_image: PipelineImageInput = None,
|
1150 |
+
masked_image_latents: torch.Tensor = None,
|
1151 |
+
height: Optional[int] = None,
|
1152 |
+
width: Optional[int] = None,
|
1153 |
+
adapter_image: PipelineImageInput = None,
|
1154 |
+
padding_mask_crop: Optional[int] = None,
|
1155 |
+
strength: float = 0.9999,
|
1156 |
+
num_inference_steps: int = 50,
|
1157 |
+
timesteps: List[int] = None,
|
1158 |
+
sigmas: List[float] = None,
|
1159 |
+
denoising_start: Optional[float] = None,
|
1160 |
+
denoising_end: Optional[float] = None,
|
1161 |
+
guidance_scale: float = 7.5,
|
1162 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1163 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
1164 |
+
num_images_per_prompt: Optional[int] = 1,
|
1165 |
+
eta: float = 0.0,
|
1166 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1167 |
+
latents: Optional[torch.Tensor] = None,
|
1168 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
1169 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
1170 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1171 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1172 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1173 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
1174 |
+
output_type: Optional[str] = "pil",
|
1175 |
+
return_dict: bool = True,
|
1176 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1177 |
+
guidance_rescale: float = 0.0,
|
1178 |
+
original_size: Tuple[int, int] = None,
|
1179 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1180 |
+
target_size: Tuple[int, int] = None,
|
1181 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
1182 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1183 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
1184 |
+
aesthetic_score: float = 6.0,
|
1185 |
+
negative_aesthetic_score: float = 2.5,
|
1186 |
+
adapter_conditioning_scale: Union[float, List[float]] = 1.0,
|
1187 |
+
adapter_conditioning_factor: float = 1.0,
|
1188 |
+
clip_skip: Optional[int] = None,
|
1189 |
+
callback_on_step_end: Optional[
|
1190 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
1191 |
+
] = None,
|
1192 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1193 |
+
**kwargs,
|
1194 |
+
):
|
1195 |
+
r"""
|
1196 |
+
Function invoked when calling the pipeline for generation.
|
1197 |
+
|
1198 |
+
Args:
|
1199 |
+
prompt (`str` or `List[str]`, *optional*):
|
1200 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
1201 |
+
instead.
|
1202 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
1203 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
1204 |
+
used in both text-encoders
|
1205 |
+
image (`PIL.Image.Image`):
|
1206 |
+
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
1207 |
+
be masked out with `mask_image` and repainted according to `prompt`.
|
1208 |
+
mask_image (`PIL.Image.Image`):
|
1209 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
1210 |
+
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
1211 |
+
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
1212 |
+
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
1213 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1214 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
1215 |
+
Anything below 512 pixels won't work well for
|
1216 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1217 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1218 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1219 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
1220 |
+
Anything below 512 pixels won't work well for
|
1221 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1222 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1223 |
+
padding_mask_crop (`int`, *optional*, defaults to `None`):
|
1224 |
+
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
1225 |
+
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
|
1226 |
+
with the same aspect ration of the image and contains all masked area, and then expand that area based
|
1227 |
+
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
|
1228 |
+
resizing to the original image size for inpainting. This is useful when the masked area is small while
|
1229 |
+
the image is large and contain information irrelevant for inpainting, such as background.
|
1230 |
+
strength (`float`, *optional*, defaults to 0.9999):
|
1231 |
+
Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
|
1232 |
+
between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
|
1233 |
+
`strength`. The number of denoising steps depends on the amount of noise initially added. When
|
1234 |
+
`strength` is 1, added noise will be maximum and the denoising process will run for the full number of
|
1235 |
+
iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
|
1236 |
+
portion of the reference `image`. Note that in the case of `denoising_start` being declared as an
|
1237 |
+
integer, the value of `strength` will be ignored.
|
1238 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1239 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1240 |
+
expense of slower inference.
|
1241 |
+
timesteps (`List[int]`, *optional*):
|
1242 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1243 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1244 |
+
passed will be used. Must be in descending order.
|
1245 |
+
sigmas (`List[float]`, *optional*):
|
1246 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
1247 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
1248 |
+
will be used.
|
1249 |
+
denoising_start (`float`, *optional*):
|
1250 |
+
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1251 |
+
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
1252 |
+
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
1253 |
+
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
1254 |
+
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
|
1255 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
1256 |
+
denoising_end (`float`, *optional*):
|
1257 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1258 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
1259 |
+
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
|
1260 |
+
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
|
1261 |
+
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
|
1262 |
+
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1263 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
1264 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1265 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1266 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1267 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1268 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1269 |
+
usually at the expense of lower image quality.
|
1270 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1271 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1272 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1273 |
+
less than `1`).
|
1274 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1275 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1276 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
1277 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1278 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1279 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1280 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1281 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1282 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1283 |
+
argument.
|
1284 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1285 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1286 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1287 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1288 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1289 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1290 |
+
input argument.
|
1291 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1292 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
1293 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1294 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1295 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1296 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1297 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1298 |
+
The number of images to generate per prompt.
|
1299 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1300 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1301 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1302 |
+
generator (`torch.Generator`, *optional*):
|
1303 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1304 |
+
to make generation deterministic.
|
1305 |
+
latents (`torch.Tensor`, *optional*):
|
1306 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1307 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1308 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
1309 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1310 |
+
The output format of the generate image. Choose between
|
1311 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1312 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1313 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1314 |
+
plain tuple.
|
1315 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1316 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1317 |
+
`self.processor` in
|
1318 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1319 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1320 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1321 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1322 |
+
explained in section 2.2 of
|
1323 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1324 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1325 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1326 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1327 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1328 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1329 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1330 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1331 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1332 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1333 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1334 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1335 |
+
micro-conditioning as explained in section 2.2 of
|
1336 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1337 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1338 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1339 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1340 |
+
micro-conditioning as explained in section 2.2 of
|
1341 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1342 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1343 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1344 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
1345 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1346 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1347 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1348 |
+
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
1349 |
+
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
1350 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1351 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1352 |
+
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
1353 |
+
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1354 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
|
1355 |
+
simulate an aesthetic score of the generated image by influencing the negative text condition.
|
1356 |
+
clip_skip (`int`, *optional*):
|
1357 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1358 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1359 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1360 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1361 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1362 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1363 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1364 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1365 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1366 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1367 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1368 |
+
|
1369 |
+
Examples:
|
1370 |
+
|
1371 |
+
Returns:
|
1372 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
1373 |
+
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
1374 |
+
`tuple. `tuple. When returning a tuple, the first element is a list with the generated images.
|
1375 |
+
"""
|
1376 |
+
height, width = self._default_height_width(height, width, adapter_image)
|
1377 |
+
device = self._execution_device
|
1378 |
+
|
1379 |
+
if isinstance(self.adapter, MultiAdapter):
|
1380 |
+
adapter_input = []
|
1381 |
+
|
1382 |
+
for one_image in adapter_image:
|
1383 |
+
one_image = _preprocess_adapter_image(one_image, height, width)
|
1384 |
+
one_image = one_image.to(device=device, dtype=self.adapter.dtype)
|
1385 |
+
adapter_input.append(one_image)
|
1386 |
+
else:
|
1387 |
+
adapter_input = _preprocess_adapter_image(adapter_image, height, width)
|
1388 |
+
adapter_input = adapter_input.to(device=device, dtype=self.adapter.dtype)
|
1389 |
+
|
1390 |
+
callback = kwargs.pop("callback", None)
|
1391 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1392 |
+
|
1393 |
+
if callback is not None:
|
1394 |
+
deprecate(
|
1395 |
+
"callback",
|
1396 |
+
"1.0.0",
|
1397 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1398 |
+
)
|
1399 |
+
if callback_steps is not None:
|
1400 |
+
deprecate(
|
1401 |
+
"callback_steps",
|
1402 |
+
"1.0.0",
|
1403 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1404 |
+
)
|
1405 |
+
|
1406 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1407 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1408 |
+
|
1409 |
+
# 0. Default height and width to unet
|
1410 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
1411 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
1412 |
+
|
1413 |
+
# 1. Check inputs
|
1414 |
+
self.check_inputs(
|
1415 |
+
prompt,
|
1416 |
+
prompt_2,
|
1417 |
+
image,
|
1418 |
+
mask_image,
|
1419 |
+
height,
|
1420 |
+
width,
|
1421 |
+
strength,
|
1422 |
+
callback_steps,
|
1423 |
+
output_type,
|
1424 |
+
negative_prompt,
|
1425 |
+
negative_prompt_2,
|
1426 |
+
prompt_embeds,
|
1427 |
+
negative_prompt_embeds,
|
1428 |
+
ip_adapter_image,
|
1429 |
+
ip_adapter_image_embeds,
|
1430 |
+
callback_on_step_end_tensor_inputs,
|
1431 |
+
padding_mask_crop,
|
1432 |
+
)
|
1433 |
+
|
1434 |
+
self._guidance_scale = guidance_scale
|
1435 |
+
self._guidance_rescale = guidance_rescale
|
1436 |
+
self._clip_skip = clip_skip
|
1437 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1438 |
+
self._denoising_end = denoising_end
|
1439 |
+
self._denoising_start = denoising_start
|
1440 |
+
self._interrupt = False
|
1441 |
+
|
1442 |
+
# 2. Define call parameters
|
1443 |
+
if prompt is not None and isinstance(prompt, str):
|
1444 |
+
batch_size = 1
|
1445 |
+
elif prompt is not None and isinstance(prompt, list):
|
1446 |
+
batch_size = len(prompt)
|
1447 |
+
else:
|
1448 |
+
batch_size = prompt_embeds.shape[0]
|
1449 |
+
|
1450 |
+
device = self._execution_device
|
1451 |
+
|
1452 |
+
# 3. Encode input prompt
|
1453 |
+
text_encoder_lora_scale = (
|
1454 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1455 |
+
)
|
1456 |
+
|
1457 |
+
(
|
1458 |
+
prompt_embeds,
|
1459 |
+
negative_prompt_embeds,
|
1460 |
+
pooled_prompt_embeds,
|
1461 |
+
negative_pooled_prompt_embeds,
|
1462 |
+
) = self.encode_prompt(
|
1463 |
+
prompt=prompt,
|
1464 |
+
prompt_2=prompt_2,
|
1465 |
+
device=device,
|
1466 |
+
num_images_per_prompt=num_images_per_prompt,
|
1467 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1468 |
+
negative_prompt=negative_prompt,
|
1469 |
+
negative_prompt_2=negative_prompt_2,
|
1470 |
+
prompt_embeds=prompt_embeds,
|
1471 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1472 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1473 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1474 |
+
lora_scale=text_encoder_lora_scale,
|
1475 |
+
clip_skip=self.clip_skip,
|
1476 |
+
)
|
1477 |
+
|
1478 |
+
# 4. set timesteps
|
1479 |
+
def denoising_value_valid(dnv):
|
1480 |
+
return isinstance(dnv, float) and 0 < dnv < 1
|
1481 |
+
|
1482 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1483 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1484 |
+
)
|
1485 |
+
timesteps, num_inference_steps = self.get_timesteps(
|
1486 |
+
num_inference_steps,
|
1487 |
+
strength,
|
1488 |
+
device,
|
1489 |
+
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
|
1490 |
+
)
|
1491 |
+
# check that number of inference steps is not < 1 - as this doesn't make sense
|
1492 |
+
if num_inference_steps < 1:
|
1493 |
+
raise ValueError(
|
1494 |
+
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
|
1495 |
+
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
|
1496 |
+
)
|
1497 |
+
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
|
1498 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1499 |
+
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
|
1500 |
+
is_strength_max = strength == 1.0
|
1501 |
+
|
1502 |
+
# 5. Preprocess mask and image
|
1503 |
+
if padding_mask_crop is not None:
|
1504 |
+
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
|
1505 |
+
resize_mode = "fill"
|
1506 |
+
else:
|
1507 |
+
crops_coords = None
|
1508 |
+
resize_mode = "default"
|
1509 |
+
|
1510 |
+
original_image = image
|
1511 |
+
init_image = self.image_processor.preprocess(
|
1512 |
+
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
|
1513 |
+
)
|
1514 |
+
init_image = init_image.to(dtype=torch.float32)
|
1515 |
+
|
1516 |
+
mask = self.mask_processor.preprocess(
|
1517 |
+
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
|
1518 |
+
)
|
1519 |
+
|
1520 |
+
if masked_image_latents is not None:
|
1521 |
+
masked_image = masked_image_latents
|
1522 |
+
elif init_image.shape[1] == 4:
|
1523 |
+
# if images are in latent space, we can't mask it
|
1524 |
+
masked_image = None
|
1525 |
+
else:
|
1526 |
+
masked_image = init_image * (mask < 0.5)
|
1527 |
+
|
1528 |
+
# 6. Prepare latent variables
|
1529 |
+
num_channels_latents = self.vae.config.latent_channels
|
1530 |
+
num_channels_unet = self.unet.config.in_channels
|
1531 |
+
return_image_latents = num_channels_unet == 4
|
1532 |
+
|
1533 |
+
add_noise = True if self.denoising_start is None else False
|
1534 |
+
latents_outputs = self.prepare_latents(
|
1535 |
+
batch_size * num_images_per_prompt,
|
1536 |
+
num_channels_latents,
|
1537 |
+
height,
|
1538 |
+
width,
|
1539 |
+
prompt_embeds.dtype,
|
1540 |
+
device,
|
1541 |
+
generator,
|
1542 |
+
latents,
|
1543 |
+
image=init_image,
|
1544 |
+
timestep=latent_timestep,
|
1545 |
+
is_strength_max=is_strength_max,
|
1546 |
+
add_noise=add_noise,
|
1547 |
+
return_noise=True,
|
1548 |
+
return_image_latents=return_image_latents,
|
1549 |
+
)
|
1550 |
+
|
1551 |
+
if return_image_latents:
|
1552 |
+
latents, noise, image_latents = latents_outputs
|
1553 |
+
else:
|
1554 |
+
latents, noise = latents_outputs
|
1555 |
+
|
1556 |
+
# 7. Prepare mask latent variables
|
1557 |
+
mask, masked_image_latents = self.prepare_mask_latents(
|
1558 |
+
mask,
|
1559 |
+
masked_image,
|
1560 |
+
batch_size * num_images_per_prompt,
|
1561 |
+
height,
|
1562 |
+
width,
|
1563 |
+
prompt_embeds.dtype,
|
1564 |
+
device,
|
1565 |
+
generator,
|
1566 |
+
self.do_classifier_free_guidance,
|
1567 |
+
)
|
1568 |
+
|
1569 |
+
# 8. Check that sizes of mask, masked image and latents match
|
1570 |
+
if num_channels_unet == 9:
|
1571 |
+
# default case for runwayml/stable-diffusion-inpainting
|
1572 |
+
num_channels_mask = mask.shape[1]
|
1573 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
1574 |
+
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
1575 |
+
raise ValueError(
|
1576 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
1577 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
1578 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
1579 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
1580 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
1581 |
+
)
|
1582 |
+
elif num_channels_unet != 4:
|
1583 |
+
raise ValueError(
|
1584 |
+
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
|
1585 |
+
)
|
1586 |
+
# 8.1 Prepare extra step kwargs.
|
1587 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1588 |
+
|
1589 |
+
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1590 |
+
height, width = latents.shape[-2:]
|
1591 |
+
height = height * self.vae_scale_factor
|
1592 |
+
width = width * self.vae_scale_factor
|
1593 |
+
|
1594 |
+
original_size = original_size or (height, width)
|
1595 |
+
target_size = target_size or (height, width)
|
1596 |
+
|
1597 |
+
# 10. Prepare added time ids & embeddings
|
1598 |
+
if isinstance(self.adapter, MultiAdapter):
|
1599 |
+
adapter_state = self.adapter(adapter_input, adapter_conditioning_scale)
|
1600 |
+
for k, v in enumerate(adapter_state):
|
1601 |
+
adapter_state[k] = v
|
1602 |
+
else:
|
1603 |
+
adapter_state = self.adapter(adapter_input)
|
1604 |
+
for k, v in enumerate(adapter_state):
|
1605 |
+
adapter_state[k] = v * adapter_conditioning_scale
|
1606 |
+
if num_images_per_prompt > 1:
|
1607 |
+
for k, v in enumerate(adapter_state):
|
1608 |
+
adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1)
|
1609 |
+
if self.do_classifier_free_guidance:
|
1610 |
+
for k, v in enumerate(adapter_state):
|
1611 |
+
adapter_state[k] = torch.cat([v] * 2, dim=0)
|
1612 |
+
|
1613 |
+
if negative_original_size is None:
|
1614 |
+
negative_original_size = original_size
|
1615 |
+
if negative_target_size is None:
|
1616 |
+
negative_target_size = target_size
|
1617 |
+
|
1618 |
+
add_text_embeds = pooled_prompt_embeds
|
1619 |
+
if self.text_encoder_2 is None:
|
1620 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1621 |
+
else:
|
1622 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1623 |
+
|
1624 |
+
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
1625 |
+
original_size,
|
1626 |
+
crops_coords_top_left,
|
1627 |
+
target_size,
|
1628 |
+
aesthetic_score,
|
1629 |
+
negative_aesthetic_score,
|
1630 |
+
negative_original_size,
|
1631 |
+
negative_crops_coords_top_left,
|
1632 |
+
negative_target_size,
|
1633 |
+
dtype=prompt_embeds.dtype,
|
1634 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1635 |
+
)
|
1636 |
+
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1637 |
+
|
1638 |
+
if self.do_classifier_free_guidance:
|
1639 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1640 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1641 |
+
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
1642 |
+
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
1643 |
+
|
1644 |
+
prompt_embeds = prompt_embeds.to(device)
|
1645 |
+
add_text_embeds = add_text_embeds.to(device)
|
1646 |
+
add_time_ids = add_time_ids.to(device)
|
1647 |
+
|
1648 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1649 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1650 |
+
ip_adapter_image,
|
1651 |
+
ip_adapter_image_embeds,
|
1652 |
+
device,
|
1653 |
+
batch_size * num_images_per_prompt,
|
1654 |
+
self.do_classifier_free_guidance,
|
1655 |
+
)
|
1656 |
+
|
1657 |
+
# 11. Denoising loop
|
1658 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1659 |
+
|
1660 |
+
if (
|
1661 |
+
self.denoising_end is not None
|
1662 |
+
and self.denoising_start is not None
|
1663 |
+
and denoising_value_valid(self.denoising_end)
|
1664 |
+
and denoising_value_valid(self.denoising_start)
|
1665 |
+
and self.denoising_start >= self.denoising_end
|
1666 |
+
):
|
1667 |
+
raise ValueError(
|
1668 |
+
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
|
1669 |
+
+ f" {self.denoising_end} when using type float."
|
1670 |
+
)
|
1671 |
+
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
|
1672 |
+
discrete_timestep_cutoff = int(
|
1673 |
+
round(
|
1674 |
+
self.scheduler.config.num_train_timesteps
|
1675 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1676 |
+
)
|
1677 |
+
)
|
1678 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1679 |
+
timesteps = timesteps[:num_inference_steps]
|
1680 |
+
|
1681 |
+
# 11.1 Optionally get Guidance Scale Embedding
|
1682 |
+
timestep_cond = None
|
1683 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1684 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1685 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1686 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1687 |
+
).to(device=device, dtype=latents.dtype)
|
1688 |
+
|
1689 |
+
self._num_timesteps = len(timesteps)
|
1690 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1691 |
+
for i, t in enumerate(timesteps):
|
1692 |
+
if self.interrupt:
|
1693 |
+
continue
|
1694 |
+
# expand the latents if we are doing classifier free guidance
|
1695 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1696 |
+
|
1697 |
+
# concat latents, mask, masked_image_latents in the channel dimension
|
1698 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1699 |
+
|
1700 |
+
if num_channels_unet == 9:
|
1701 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
1702 |
+
|
1703 |
+
# predict the noise residual
|
1704 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1705 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1706 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1707 |
+
|
1708 |
+
if i < int(num_inference_steps * adapter_conditioning_factor):
|
1709 |
+
down_intrablock_additional_residuals = [state.clone() for state in adapter_state]
|
1710 |
+
else:
|
1711 |
+
down_intrablock_additional_residuals = None
|
1712 |
+
|
1713 |
+
noise_pred = self.unet(
|
1714 |
+
latent_model_input,
|
1715 |
+
t,
|
1716 |
+
encoder_hidden_states=prompt_embeds,
|
1717 |
+
timestep_cond=timestep_cond,
|
1718 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1719 |
+
added_cond_kwargs=added_cond_kwargs,
|
1720 |
+
return_dict=False,
|
1721 |
+
down_intrablock_additional_residuals=down_intrablock_additional_residuals,
|
1722 |
+
)[0]
|
1723 |
+
|
1724 |
+
# perform guidance
|
1725 |
+
if self.do_classifier_free_guidance:
|
1726 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1727 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1728 |
+
|
1729 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1730 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1731 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1732 |
+
|
1733 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1734 |
+
latents_dtype = latents.dtype
|
1735 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1736 |
+
if latents.dtype != latents_dtype:
|
1737 |
+
if torch.backends.mps.is_available():
|
1738 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1739 |
+
latents = latents.to(latents_dtype)
|
1740 |
+
|
1741 |
+
if num_channels_unet == 4:
|
1742 |
+
init_latents_proper = image_latents
|
1743 |
+
if self.do_classifier_free_guidance:
|
1744 |
+
init_mask, _ = mask.chunk(2)
|
1745 |
+
else:
|
1746 |
+
init_mask = mask
|
1747 |
+
|
1748 |
+
if i < len(timesteps) - 1:
|
1749 |
+
noise_timestep = timesteps[i + 1]
|
1750 |
+
init_latents_proper = self.scheduler.add_noise(
|
1751 |
+
init_latents_proper, noise, torch.tensor([noise_timestep])
|
1752 |
+
)
|
1753 |
+
|
1754 |
+
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
|
1755 |
+
|
1756 |
+
if callback_on_step_end is not None:
|
1757 |
+
callback_kwargs = {}
|
1758 |
+
for k in callback_on_step_end_tensor_inputs:
|
1759 |
+
callback_kwargs[k] = locals()[k]
|
1760 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1761 |
+
|
1762 |
+
latents = callback_outputs.pop("latents", latents)
|
1763 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1764 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1765 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1766 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1767 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1768 |
+
)
|
1769 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1770 |
+
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
|
1771 |
+
mask = callback_outputs.pop("mask", mask)
|
1772 |
+
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
|
1773 |
+
|
1774 |
+
# call the callback, if provided
|
1775 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1776 |
+
progress_bar.update()
|
1777 |
+
if callback is not None and i % callback_steps == 0:
|
1778 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1779 |
+
callback(step_idx, t, latents)
|
1780 |
+
|
1781 |
+
if XLA_AVAILABLE:
|
1782 |
+
xm.mark_step()
|
1783 |
+
|
1784 |
+
if not output_type == "latent":
|
1785 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1786 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1787 |
+
|
1788 |
+
if needs_upcasting:
|
1789 |
+
self.upcast_vae()
|
1790 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1791 |
+
elif latents.dtype != self.vae.dtype:
|
1792 |
+
if torch.backends.mps.is_available():
|
1793 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1794 |
+
self.vae = self.vae.to(latents.dtype)
|
1795 |
+
|
1796 |
+
# unscale/denormalize the latents
|
1797 |
+
# denormalize with the mean and std if available and not None
|
1798 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1799 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1800 |
+
if has_latents_mean and has_latents_std:
|
1801 |
+
latents_mean = (
|
1802 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1803 |
+
)
|
1804 |
+
latents_std = (
|
1805 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1806 |
+
)
|
1807 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1808 |
+
else:
|
1809 |
+
latents = latents / self.vae.config.scaling_factor
|
1810 |
+
|
1811 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1812 |
+
|
1813 |
+
# cast back to fp16 if needed
|
1814 |
+
if needs_upcasting:
|
1815 |
+
self.vae.to(dtype=torch.float16)
|
1816 |
+
else:
|
1817 |
+
return StableDiffusionXLPipelineOutput(images=latents)
|
1818 |
+
|
1819 |
+
# apply watermark if available
|
1820 |
+
if self.watermark is not None:
|
1821 |
+
image = self.watermark.apply_watermark(image)
|
1822 |
+
|
1823 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1824 |
+
|
1825 |
+
if padding_mask_crop is not None:
|
1826 |
+
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
|
1827 |
+
|
1828 |
+
# Offload all models
|
1829 |
+
self.maybe_free_model_hooks()
|
1830 |
+
|
1831 |
+
if not return_dict:
|
1832 |
+
return (image,)
|
1833 |
+
|
1834 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
segment_utils.py
CHANGED
@@ -48,6 +48,31 @@ def segment_image(input_image, category, generate_size, mask_expansion, mask_dil
|
|
48 |
|
49 |
return origin_area_image, croper
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def get_face_mask(category_mask_np, dilation=1):
|
52 |
face_skin_mask = category_mask_np == 3
|
53 |
if dilation > 0:
|
|
|
48 |
|
49 |
return origin_area_image, croper
|
50 |
|
51 |
+
def segment_image_withmask(input_image, category, generate_size, mask_expansion, mask_dilation):
|
52 |
+
mask_size = int(generate_size)
|
53 |
+
mask_expansion = int(mask_expansion)
|
54 |
+
|
55 |
+
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=np.asarray(input_image))
|
56 |
+
segmentation_result = segmenter.segment(image)
|
57 |
+
category_mask = segmentation_result.category_mask
|
58 |
+
category_mask_np = category_mask.numpy_view()
|
59 |
+
|
60 |
+
if category == "hair":
|
61 |
+
target_mask = get_hair_mask(category_mask_np, mask_dilation)
|
62 |
+
elif category == "clothes":
|
63 |
+
target_mask = get_clothes_mask(category_mask_np, mask_dilation)
|
64 |
+
elif category == "face":
|
65 |
+
target_mask = get_face_mask(category_mask_np, mask_dilation)
|
66 |
+
else:
|
67 |
+
target_mask = get_face_mask(category_mask_np, mask_dilation)
|
68 |
+
|
69 |
+
croper = Croper(input_image, target_mask, mask_size, mask_expansion)
|
70 |
+
croper.corp_mask_image()
|
71 |
+
origin_area_image = croper.resized_square_image
|
72 |
+
mask_image = croper.resized_square_mask_image
|
73 |
+
|
74 |
+
return origin_area_image, mask_image, croper
|
75 |
+
|
76 |
def get_face_mask(category_mask_np, dilation=1):
|
77 |
face_skin_mask = category_mask_np == 3
|
78 |
if dilation > 0:
|