AnalogyArcade / app.py
smhavens
Switch loss for single sentence + label
878e47b
raw
history blame
9.21 kB
import gradio as gr
import math
import spacy
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers import InputExample
from sentence_transformers import losses
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
from transformers import TrainingArguments, Trainer
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import evaluate
import nltk
from nltk.corpus import stopwords
import subprocess
import sys
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
nltk.download('stopwords')
nlp = spacy.load("en_core_web_sm")
stops = stopwords.words("english")
# answer = "Pizza"
guesses = []
answer = "Pizza"
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def normalize(comment, lowercase, remove_stopwords):
if lowercase:
comment = comment.lower()
comment = nlp(comment)
lemmatized = list()
for word in comment:
lemma = word.lemma_.strip()
if lemma:
if not remove_stopwords or (remove_stopwords and lemma not in stops):
lemmatized.append(lemma)
return " ".join(lemmatized)
def tokenize_function(examples):
return tokenizer(examples["text"])
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
metric = evaluate.load("accuracy")
return metric.compute(predictions=predictions, references=labels)
def training():
dataset_id = "ag_news"
dataset = load_dataset(dataset_id)
# dataset = dataset["train"]
# tokenized_datasets = dataset.map(tokenize_function, batched=True)
print(f"- The {dataset_id} dataset has {dataset['train'].num_rows} examples.")
print(f"- Each example is a {type(dataset['train'][0])} with a {type(dataset['train'][0]['text'])} as value.")
print(f"- Examples look like this: {dataset['train'][0]}")
# small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
# small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
# dataset = dataset["train"].map(tokenize_function, batched=True)
# dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "label"])
# dataset.format['type']
# print(dataset)
train_examples = []
train_data = dataset["train"]
# For agility we only 1/2 of our available data
n_examples = dataset["train"].num_rows // 2
# n_remaining = dataset["train"].num_rows - n_examples
dataset_clean = {}
dataset_0 = []
dataset_1 = []
dataset_2 = []
dataset_3 = []
for i in range(n_examples):
dataset_clean[i] = {}
dataset_clean[i]["text"] = normalize(train_data[i]["text"], lowercase=True, remove_stopwords=True)
dataset_clean[i]["label"] = train_data[i]["label"]
if train_data[i]["label"] == 0:
dataset_0.append(dataset_clean[i])
elif train_data[i]["label"] == 1:
dataset_1.append(dataset_clean[i])
elif train_data[i]["label"] == 2:
dataset_2.append(dataset_clean[i])
elif train_data[i]["label"] == 3:
dataset_3.append(dataset_clean[i])
n_0 = len(dataset_0) // 2
n_1 = len(dataset_1) // 2
n_2 = len(dataset_2) // 2
n_3 = len(dataset_3) // 2
print("Label lengths:", len(dataset_0), len(dataset_1), len(dataset_2), len(dataset_3))
# for i in range(n_examples):
# example = dataset_clean[i]
# example_opposite = dataset_clean[-(i)]
# # print(example["text"])
# train_examples.append(InputExample(texts=[example['text'], example_opposite["text"]]))
for i in range(n_0):
example = dataset_0[i]
# example_opposite = dataset_0[-(i)]
# print(example["text"])
train_examples.append(InputExample(texts=example['text'], label=0))
for i in range(n_1):
example = dataset_1[i]
# example_opposite = dataset_1[-(i)]
# print(example["text"])
train_examples.append(InputExample(texts=example['text'], label=1))
for i in range(n_2):
example = dataset_2[i]
# example_opposite = dataset_2[-(i)]
# print(example["text"])
train_examples.append(InputExample(texts=example['text'], label=2))
for i in range(n_3):
example = dataset_3[i]
# example_opposite = dataset_3[-(i)]
# print(example["text"])
train_examples.append(InputExample(texts=example['text'], label=3))
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
# print(train_examples)
embeddings = finetune(train_dataloader)
return (dataset['train'].num_rows, type(dataset['train'][0]), type(dataset['train'][0]['text']), dataset['train'][0], embeddings)
def finetune(train_dataloader):
# model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
model_id = "sentence-transformers/all-MiniLM-L6-v2"
model = SentenceTransformer(model_id)
# training_args = TrainingArguments(output_dir="test_trainer")
# USE THIS LINK
# https://huggingface.co/blog/how-to-train-sentence-transformers
train_loss = losses.BatchHardTripletLoss(model=model)
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
model.save_to_hub(
"sentence-transformers/all-MiniLM-L6-v2",
organization="smhavens",
train_datasets=["ag_news"],
)
# accuracy = compute_metrics(eval, metric)
# training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
# trainer = Trainer(
# model=model,
# args=training_args,
# train_dataset=train,
# eval_dataset=eval,
# compute_metrics=compute_metrics,
# )
# trainer.train()
sentences = ["This is an example sentence", "Each sentence is converted"]
# model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)
return sentence_embeddings
def greet(name):
return "Hello " + name + "!!"
def check_answer(guess:str):
global guesses
global answer
guesses.append(guess)
output = ""
for guess in guesses:
output += ("- " + guess + "\n")
output = output[:-1]
if guess.lower() == answer.lower():
return "Correct!", output
else:
return "Try again!", output
def main():
word1 = "Black"
word2 = "White"
word3 = "Sun"
global answer
answer = "Moon"
global guesses
num_rows, data_type, value, example, embeddings = training()
prompt = f"{word1} is to {word2} as {word3} is to ____"
with gr.Blocks() as iface:
gr.Markdown(prompt)
with gr.Tab("Guess"):
text_input = gr.Textbox()
text_output = gr.Textbox()
text_button = gr.Button("Submit")
with gr.Accordion("Open for previous guesses"):
text_guesses = gr.Textbox()
with gr.Tab("Testing"):
gr.Markdown(f"""Number of rows in dataset is {num_rows}, with each having type {data_type} and value {value}.
An example is {example}.
The Embeddings are {embeddings}.""")
text_button.click(check_answer, inputs=[text_input], outputs=[text_output, text_guesses])
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
if __name__ == "__main__":
main()