Spaces:
Sleeping
Sleeping
smhavens
commited on
Commit
·
d5bca77
1
Parent(s):
9be73ed
Minimized training version
Browse files
train.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import math
|
3 |
+
import spacy
|
4 |
+
from datasets import load_dataset
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from sentence_transformers import InputExample
|
7 |
+
from sentence_transformers import losses
|
8 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
|
9 |
+
from transformers import TrainingArguments, Trainer
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torch.utils.data import DataLoader
|
13 |
+
import numpy as np
|
14 |
+
import evaluate
|
15 |
+
import nltk
|
16 |
+
from nltk.corpus import stopwords
|
17 |
+
import subprocess
|
18 |
+
import sys
|
19 |
+
|
20 |
+
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
21 |
+
# subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
|
23 |
+
# nltk.download('stopwords')
|
24 |
+
# nlp = spacy.load("en_core_web_sm")
|
25 |
+
# stops = stopwords.words("english")
|
26 |
+
|
27 |
+
# answer = "Pizza"
|
28 |
+
guesses = []
|
29 |
+
answer = "Pizza"
|
30 |
+
|
31 |
+
|
32 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
33 |
+
def mean_pooling(model_output, attention_mask):
|
34 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
35 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
36 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
37 |
+
|
38 |
+
|
39 |
+
# def normalize(comment, lowercase, remove_stopwords):
|
40 |
+
# if lowercase:
|
41 |
+
# comment = comment.lower()
|
42 |
+
# comment = nlp(comment)
|
43 |
+
# lemmatized = list()
|
44 |
+
# for word in comment:
|
45 |
+
# lemma = word.lemma_.strip()
|
46 |
+
# if lemma:
|
47 |
+
# if not remove_stopwords or (remove_stopwords and lemma not in stops):
|
48 |
+
# lemmatized.append(lemma)
|
49 |
+
# return " ".join(lemmatized)
|
50 |
+
|
51 |
+
|
52 |
+
def tokenize_function(examples):
|
53 |
+
return tokenizer(examples["text"])
|
54 |
+
|
55 |
+
|
56 |
+
def compute_metrics(eval_pred):
|
57 |
+
logits, labels = eval_pred
|
58 |
+
predictions = np.argmax(logits, axis=-1)
|
59 |
+
metric = evaluate.load("accuracy")
|
60 |
+
return metric.compute(predictions=predictions, references=labels)
|
61 |
+
|
62 |
+
|
63 |
+
def training():
|
64 |
+
dataset_id = "ag_news"
|
65 |
+
dataset = load_dataset(dataset_id)
|
66 |
+
# dataset = dataset["train"]
|
67 |
+
# tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
68 |
+
|
69 |
+
print(f"- The {dataset_id} dataset has {dataset['train'].num_rows} examples.")
|
70 |
+
print(f"- Each example is a {type(dataset['train'][0])} with a {type(dataset['train'][0]['text'])} as value.")
|
71 |
+
print(f"- Examples look like this: {dataset['train'][0]}")
|
72 |
+
|
73 |
+
# small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
|
74 |
+
# small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
75 |
+
|
76 |
+
# dataset = dataset["train"].map(tokenize_function, batched=True)
|
77 |
+
# dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "label"])
|
78 |
+
# dataset.format['type']
|
79 |
+
|
80 |
+
# print(dataset)
|
81 |
+
|
82 |
+
train_examples = []
|
83 |
+
train_data = dataset["train"]
|
84 |
+
# For agility we only 1/2 of our available data
|
85 |
+
n_examples = dataset["train"].num_rows // 2
|
86 |
+
# n_remaining = dataset["train"].num_rows - n_examples
|
87 |
+
# dataset_clean = {}
|
88 |
+
# # dataset_0 = []
|
89 |
+
# # dataset_1 = []
|
90 |
+
# # dataset_2 = []
|
91 |
+
# # dataset_3 = []
|
92 |
+
# for i in range(n_examples):
|
93 |
+
# dataset_clean[i] = {}
|
94 |
+
# dataset_clean[i]["text"] = normalize(train_data[i]["text"], lowercase=True, remove_stopwords=True)
|
95 |
+
# dataset_clean[i]["label"] = train_data[i]["label"]
|
96 |
+
# if train_data[i]["label"] == 0:
|
97 |
+
# dataset_0.append(dataset_clean[i])
|
98 |
+
# elif train_data[i]["label"] == 1:
|
99 |
+
# dataset_1.append(dataset_clean[i])
|
100 |
+
# elif train_data[i]["label"] == 2:
|
101 |
+
# dataset_2.append(dataset_clean[i])
|
102 |
+
# elif train_data[i]["label"] == 3:
|
103 |
+
# dataset_3.append(dataset_clean[i])
|
104 |
+
# n_0 = len(dataset_0) // 2
|
105 |
+
# n_1 = len(dataset_1) // 2
|
106 |
+
# n_2 = len(dataset_2) // 2
|
107 |
+
# n_3 = len(dataset_3) // 2
|
108 |
+
# print("Label lengths:", len(dataset_0), len(dataset_1), len(dataset_2), len(dataset_3))
|
109 |
+
|
110 |
+
for i in range(n_examples):
|
111 |
+
example = train_data[i]
|
112 |
+
# example_opposite = dataset_clean[-(i)]
|
113 |
+
# print(example["text"])
|
114 |
+
train_examples.append(InputExample(texts=[example['text']], label=example['label']))
|
115 |
+
|
116 |
+
# for i in range(n_0):
|
117 |
+
# example = dataset_0[i]
|
118 |
+
# # example_opposite = dataset_0[-(i)]
|
119 |
+
# # print(example["text"])
|
120 |
+
# train_examples.append(InputExample(texts=[example['text']], label=0))
|
121 |
+
|
122 |
+
# for i in range(n_1):
|
123 |
+
# example = dataset_1[i]
|
124 |
+
# # example_opposite = dataset_1[-(i)]
|
125 |
+
# # print(example["text"])
|
126 |
+
# train_examples.append(InputExample(texts=[example['text']], label=1))
|
127 |
+
|
128 |
+
# for i in range(n_2):
|
129 |
+
# example = dataset_2[i]
|
130 |
+
# # example_opposite = dataset_2[-(i)]
|
131 |
+
# # print(example["text"])
|
132 |
+
# train_examples.append(InputExample(texts=[example['text']], label=2))
|
133 |
+
|
134 |
+
# for i in range(n_3):
|
135 |
+
# example = dataset_3[i]
|
136 |
+
# # example_opposite = dataset_3[-(i)]
|
137 |
+
# # print(example["text"])
|
138 |
+
# train_examples.append(InputExample(texts=[example['text']], label=3))
|
139 |
+
|
140 |
+
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
141 |
+
|
142 |
+
print("END DATALOADER")
|
143 |
+
|
144 |
+
# print(train_examples)
|
145 |
+
|
146 |
+
embeddings = finetune(train_dataloader)
|
147 |
+
|
148 |
+
return (dataset['train'].num_rows, type(dataset['train'][0]), type(dataset['train'][0]['text']), dataset['train'][0], embeddings)
|
149 |
+
|
150 |
+
|
151 |
+
def finetune(train_dataloader):
|
152 |
+
# model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
153 |
+
model_id = "sentence-transformers/all-MiniLM-L6-v2"
|
154 |
+
model = SentenceTransformer(model_id)
|
155 |
+
|
156 |
+
# training_args = TrainingArguments(output_dir="test_trainer")
|
157 |
+
|
158 |
+
# USE THIS LINK
|
159 |
+
# https://huggingface.co/blog/how-to-train-sentence-transformers
|
160 |
+
|
161 |
+
train_loss = losses.BatchHardSoftMarginTripletLoss(model=model)
|
162 |
+
|
163 |
+
print("BEGIN FIT")
|
164 |
+
|
165 |
+
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
|
166 |
+
|
167 |
+
model.save("ag_news_model")
|
168 |
+
|
169 |
+
model.save_to_hub("smhavens/all-MiniLM-agNews")
|
170 |
+
# accuracy = compute_metrics(eval, metric)
|
171 |
+
|
172 |
+
# training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
|
173 |
+
|
174 |
+
# trainer = Trainer(
|
175 |
+
# model=model,
|
176 |
+
# args=training_args,
|
177 |
+
# train_dataset=train,
|
178 |
+
# eval_dataset=eval,
|
179 |
+
# compute_metrics=compute_metrics,
|
180 |
+
# )
|
181 |
+
|
182 |
+
# trainer.train()
|
183 |
+
|
184 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
185 |
+
|
186 |
+
# model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
187 |
+
embeddings = model.encode(sentences)
|
188 |
+
print(embeddings)
|
189 |
+
|
190 |
+
# Sentences we want sentence embeddings for
|
191 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
192 |
+
|
193 |
+
# Load model from HuggingFace Hub
|
194 |
+
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
195 |
+
# model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
196 |
+
|
197 |
+
# Tokenize sentences
|
198 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
199 |
+
|
200 |
+
# Compute token embeddings
|
201 |
+
with torch.no_grad():
|
202 |
+
model_output = model(**encoded_input)
|
203 |
+
|
204 |
+
# Perform pooling
|
205 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
206 |
+
|
207 |
+
# Normalize embeddings
|
208 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
209 |
+
|
210 |
+
print("Sentence embeddings:")
|
211 |
+
print(sentence_embeddings)
|
212 |
+
return sentence_embeddings
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
def greet(name):
|
217 |
+
return "Hello " + name + "!!"
|
218 |
+
|
219 |
+
def check_answer(guess:str):
|
220 |
+
global guesses
|
221 |
+
global answer
|
222 |
+
guesses.append(guess)
|
223 |
+
output = ""
|
224 |
+
for guess in guesses:
|
225 |
+
output += ("- " + guess + "\n")
|
226 |
+
output = output[:-1]
|
227 |
+
|
228 |
+
if guess.lower() == answer.lower():
|
229 |
+
return "Correct!", output
|
230 |
+
else:
|
231 |
+
return "Try again!", output
|
232 |
+
|
233 |
+
def main():
|
234 |
+
word1 = "Black"
|
235 |
+
word2 = "White"
|
236 |
+
word3 = "Sun"
|
237 |
+
global answer
|
238 |
+
answer = "Moon"
|
239 |
+
global guesses
|
240 |
+
|
241 |
+
num_rows, data_type, value, example, embeddings = training()
|
242 |
+
|
243 |
+
# prompt = f"{word1} is to {word2} as {word3} is to ____"
|
244 |
+
# with gr.Blocks() as iface:
|
245 |
+
# gr.Markdown(prompt)
|
246 |
+
# with gr.Tab("Guess"):
|
247 |
+
# text_input = gr.Textbox()
|
248 |
+
# text_output = gr.Textbox()
|
249 |
+
# text_button = gr.Button("Submit")
|
250 |
+
# with gr.Accordion("Open for previous guesses"):
|
251 |
+
# text_guesses = gr.Textbox()
|
252 |
+
# with gr.Tab("Testing"):
|
253 |
+
# gr.Markdown(f"""Number of rows in dataset is {num_rows}, with each having type {data_type} and value {value}.
|
254 |
+
# An example is {example}.
|
255 |
+
# The Embeddings are {embeddings}.""")
|
256 |
+
# text_button.click(check_answer, inputs=[text_input], outputs=[text_output, text_guesses])
|
257 |
+
# # iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
258 |
+
# iface.launch()
|
259 |
+
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
|
264 |
+
if __name__ == "__main__":
|
265 |
+
main()
|