Spaces:
Sleeping
Sleeping
smhavens
commited on
Commit
•
fe56f10
1
Parent(s):
878e47b
update losses and InputExample format
Browse files
app.py
CHANGED
@@ -117,25 +117,25 @@ def training():
|
|
117 |
example = dataset_0[i]
|
118 |
# example_opposite = dataset_0[-(i)]
|
119 |
# print(example["text"])
|
120 |
-
train_examples.append(InputExample(texts=example['text'], label=0))
|
121 |
|
122 |
for i in range(n_1):
|
123 |
example = dataset_1[i]
|
124 |
# example_opposite = dataset_1[-(i)]
|
125 |
# print(example["text"])
|
126 |
-
train_examples.append(InputExample(texts=example['text'], label=1))
|
127 |
|
128 |
for i in range(n_2):
|
129 |
example = dataset_2[i]
|
130 |
# example_opposite = dataset_2[-(i)]
|
131 |
# print(example["text"])
|
132 |
-
train_examples.append(InputExample(texts=example['text'], label=2))
|
133 |
|
134 |
for i in range(n_3):
|
135 |
example = dataset_3[i]
|
136 |
# example_opposite = dataset_3[-(i)]
|
137 |
# print(example["text"])
|
138 |
-
train_examples.append(InputExample(texts=example['text'], label=3))
|
139 |
|
140 |
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
141 |
|
@@ -156,7 +156,7 @@ def finetune(train_dataloader):
|
|
156 |
# USE THIS LINK
|
157 |
# https://huggingface.co/blog/how-to-train-sentence-transformers
|
158 |
|
159 |
-
train_loss = losses.
|
160 |
|
161 |
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
|
162 |
|
|
|
117 |
example = dataset_0[i]
|
118 |
# example_opposite = dataset_0[-(i)]
|
119 |
# print(example["text"])
|
120 |
+
train_examples.append(InputExample(texts=[example['text']], label=0))
|
121 |
|
122 |
for i in range(n_1):
|
123 |
example = dataset_1[i]
|
124 |
# example_opposite = dataset_1[-(i)]
|
125 |
# print(example["text"])
|
126 |
+
train_examples.append(InputExample(texts=[example['text']], label=1))
|
127 |
|
128 |
for i in range(n_2):
|
129 |
example = dataset_2[i]
|
130 |
# example_opposite = dataset_2[-(i)]
|
131 |
# print(example["text"])
|
132 |
+
train_examples.append(InputExample(texts=[example['text']], label=2))
|
133 |
|
134 |
for i in range(n_3):
|
135 |
example = dataset_3[i]
|
136 |
# example_opposite = dataset_3[-(i)]
|
137 |
# print(example["text"])
|
138 |
+
train_examples.append(InputExample(texts=[example['text']], label=3))
|
139 |
|
140 |
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
141 |
|
|
|
156 |
# USE THIS LINK
|
157 |
# https://huggingface.co/blog/how-to-train-sentence-transformers
|
158 |
|
159 |
+
train_loss = losses.BatchHardSoftMarginTripletLoss(model=model)
|
160 |
|
161 |
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
|
162 |
|