Spaces:
Running
Running
File size: 23,996 Bytes
e32dff3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
from io import BytesIO
import os
from typing import List, Optional, Tuple
import numpy as np
import torch
from infer.lib import jit
try:
# Fix "Torch not compiled with CUDA enabled"
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
if torch.xpu.is_available():
from infer.modules.ipex import ipex_init
ipex_init()
except Exception: # pylint: disable=broad-exception-caught
pass
import torch.nn as nn
import torch.nn.functional as F
from librosa.util import normalize, pad_center, tiny
from scipy.signal import get_window
import logging
logger = logging.getLogger(__name__)
class STFT(torch.nn.Module):
def __init__(
self, filter_length=1024, hop_length=512, win_length=None, window="hann"
):
"""
This module implements an STFT using 1D convolution and 1D transpose convolutions.
This is a bit tricky so there are some cases that probably won't work as working
out the same sizes before and after in all overlap add setups is tough. Right now,
this code should work with hop lengths that are half the filter length (50% overlap
between frames).
Keyword Arguments:
filter_length {int} -- Length of filters used (default: {1024})
hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
equals the filter length). (default: {None})
window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris)
(default: {'hann'})
"""
super(STFT, self).__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length if win_length else filter_length
self.window = window
self.forward_transform = None
self.pad_amount = int(self.filter_length / 2)
fourier_basis = np.fft.fft(np.eye(self.filter_length))
cutoff = int((self.filter_length / 2 + 1))
fourier_basis = np.vstack(
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
)
forward_basis = torch.FloatTensor(fourier_basis)
inverse_basis = torch.FloatTensor(np.linalg.pinv(fourier_basis))
assert filter_length >= self.win_length
# get window and zero center pad it to filter_length
fft_window = get_window(window, self.win_length, fftbins=True)
fft_window = pad_center(fft_window, size=filter_length)
fft_window = torch.from_numpy(fft_window).float()
# window the bases
forward_basis *= fft_window
inverse_basis = (inverse_basis.T * fft_window).T
self.register_buffer("forward_basis", forward_basis.float())
self.register_buffer("inverse_basis", inverse_basis.float())
self.register_buffer("fft_window", fft_window.float())
def transform(self, input_data, return_phase=False):
"""Take input data (audio) to STFT domain.
Arguments:
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
Returns:
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
num_frequencies, num_frames)
phase {tensor} -- Phase of STFT with shape (num_batch,
num_frequencies, num_frames)
"""
input_data = F.pad(
input_data,
(self.pad_amount, self.pad_amount),
mode="reflect",
)
forward_transform = input_data.unfold(
1, self.filter_length, self.hop_length
).permute(0, 2, 1)
forward_transform = torch.matmul(self.forward_basis, forward_transform)
cutoff = int((self.filter_length / 2) + 1)
real_part = forward_transform[:, :cutoff, :]
imag_part = forward_transform[:, cutoff:, :]
magnitude = torch.sqrt(real_part**2 + imag_part**2)
if return_phase:
phase = torch.atan2(imag_part.data, real_part.data)
return magnitude, phase
else:
return magnitude
def inverse(self, magnitude, phase):
"""Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
by the ```transform``` function.
Arguments:
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
num_frequencies, num_frames)
phase {tensor} -- Phase of STFT with shape (num_batch,
num_frequencies, num_frames)
Returns:
inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
shape (num_batch, num_samples)
"""
cat = torch.cat(
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
)
fold = torch.nn.Fold(
output_size=(1, (cat.size(-1) - 1) * self.hop_length + self.filter_length),
kernel_size=(1, self.filter_length),
stride=(1, self.hop_length),
)
inverse_transform = torch.matmul(self.inverse_basis, cat)
inverse_transform = fold(inverse_transform)[
:, 0, 0, self.pad_amount : -self.pad_amount
]
window_square_sum = (
self.fft_window.pow(2).repeat(cat.size(-1), 1).T.unsqueeze(0)
)
window_square_sum = fold(window_square_sum)[
:, 0, 0, self.pad_amount : -self.pad_amount
]
inverse_transform /= window_square_sum
return inverse_transform
def forward(self, input_data):
"""Take input data (audio) to STFT domain and then back to audio.
Arguments:
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
Returns:
reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of
shape (num_batch, num_samples)
"""
self.magnitude, self.phase = self.transform(input_data, return_phase=True)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction
from time import time as ttime
class BiGRU(nn.Module):
def __init__(self, input_features, hidden_features, num_layers):
super(BiGRU, self).__init__()
self.gru = nn.GRU(
input_features,
hidden_features,
num_layers=num_layers,
batch_first=True,
bidirectional=True,
)
def forward(self, x):
return self.gru(x)[0]
class ConvBlockRes(nn.Module):
def __init__(self, in_channels, out_channels, momentum=0.01):
super(ConvBlockRes, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False,
),
nn.BatchNorm2d(out_channels, momentum=momentum),
nn.ReLU(),
nn.Conv2d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=(1, 1),
padding=(1, 1),
bias=False,
),
nn.BatchNorm2d(out_channels, momentum=momentum),
nn.ReLU(),
)
# self.shortcut:Optional[nn.Module] = None
if in_channels != out_channels:
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
def forward(self, x: torch.Tensor):
if not hasattr(self, "shortcut"):
return self.conv(x) + x
else:
return self.conv(x) + self.shortcut(x)
class Encoder(nn.Module):
def __init__(
self,
in_channels,
in_size,
n_encoders,
kernel_size,
n_blocks,
out_channels=16,
momentum=0.01,
):
super(Encoder, self).__init__()
self.n_encoders = n_encoders
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
self.layers = nn.ModuleList()
self.latent_channels = []
for i in range(self.n_encoders):
self.layers.append(
ResEncoderBlock(
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
)
)
self.latent_channels.append([out_channels, in_size])
in_channels = out_channels
out_channels *= 2
in_size //= 2
self.out_size = in_size
self.out_channel = out_channels
def forward(self, x: torch.Tensor):
concat_tensors: List[torch.Tensor] = []
x = self.bn(x)
for i, layer in enumerate(self.layers):
t, x = layer(x)
concat_tensors.append(t)
return x, concat_tensors
class ResEncoderBlock(nn.Module):
def __init__(
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
):
super(ResEncoderBlock, self).__init__()
self.n_blocks = n_blocks
self.conv = nn.ModuleList()
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
for i in range(n_blocks - 1):
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
self.kernel_size = kernel_size
if self.kernel_size is not None:
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
def forward(self, x):
for i, conv in enumerate(self.conv):
x = conv(x)
if self.kernel_size is not None:
return x, self.pool(x)
else:
return x
class Intermediate(nn.Module): #
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
super(Intermediate, self).__init__()
self.n_inters = n_inters
self.layers = nn.ModuleList()
self.layers.append(
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
)
for i in range(self.n_inters - 1):
self.layers.append(
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
)
def forward(self, x):
for i, layer in enumerate(self.layers):
x = layer(x)
return x
class ResDecoderBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
super(ResDecoderBlock, self).__init__()
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
self.n_blocks = n_blocks
self.conv1 = nn.Sequential(
nn.ConvTranspose2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(3, 3),
stride=stride,
padding=(1, 1),
output_padding=out_padding,
bias=False,
),
nn.BatchNorm2d(out_channels, momentum=momentum),
nn.ReLU(),
)
self.conv2 = nn.ModuleList()
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
for i in range(n_blocks - 1):
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
def forward(self, x, concat_tensor):
x = self.conv1(x)
x = torch.cat((x, concat_tensor), dim=1)
for i, conv2 in enumerate(self.conv2):
x = conv2(x)
return x
class Decoder(nn.Module):
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
super(Decoder, self).__init__()
self.layers = nn.ModuleList()
self.n_decoders = n_decoders
for i in range(self.n_decoders):
out_channels = in_channels // 2
self.layers.append(
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
)
in_channels = out_channels
def forward(self, x: torch.Tensor, concat_tensors: List[torch.Tensor]):
for i, layer in enumerate(self.layers):
x = layer(x, concat_tensors[-1 - i])
return x
class DeepUnet(nn.Module):
def __init__(
self,
kernel_size,
n_blocks,
en_de_layers=5,
inter_layers=4,
in_channels=1,
en_out_channels=16,
):
super(DeepUnet, self).__init__()
self.encoder = Encoder(
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
)
self.intermediate = Intermediate(
self.encoder.out_channel // 2,
self.encoder.out_channel,
inter_layers,
n_blocks,
)
self.decoder = Decoder(
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x, concat_tensors = self.encoder(x)
x = self.intermediate(x)
x = self.decoder(x, concat_tensors)
return x
class E2E(nn.Module):
def __init__(
self,
n_blocks,
n_gru,
kernel_size,
en_de_layers=5,
inter_layers=4,
in_channels=1,
en_out_channels=16,
):
super(E2E, self).__init__()
self.unet = DeepUnet(
kernel_size,
n_blocks,
en_de_layers,
inter_layers,
in_channels,
en_out_channels,
)
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
if n_gru:
self.fc = nn.Sequential(
BiGRU(3 * 128, 256, n_gru),
nn.Linear(512, 360),
nn.Dropout(0.25),
nn.Sigmoid(),
)
else:
self.fc = nn.Sequential(
nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
)
def forward(self, mel):
# print(mel.shape)
mel = mel.transpose(-1, -2).unsqueeze(1)
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
x = self.fc(x)
# print(x.shape)
return x
from librosa.filters import mel
class MelSpectrogram(torch.nn.Module):
def __init__(
self,
is_half,
n_mel_channels,
sampling_rate,
win_length,
hop_length,
n_fft=None,
mel_fmin=0,
mel_fmax=None,
clamp=1e-5,
):
super().__init__()
n_fft = win_length if n_fft is None else n_fft
self.hann_window = {}
mel_basis = mel(
sr=sampling_rate,
n_fft=n_fft,
n_mels=n_mel_channels,
fmin=mel_fmin,
fmax=mel_fmax,
htk=True,
)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer("mel_basis", mel_basis)
self.n_fft = win_length if n_fft is None else n_fft
self.hop_length = hop_length
self.win_length = win_length
self.sampling_rate = sampling_rate
self.n_mel_channels = n_mel_channels
self.clamp = clamp
self.is_half = is_half
def forward(self, audio, keyshift=0, speed=1, center=True):
factor = 2 ** (keyshift / 12)
n_fft_new = int(np.round(self.n_fft * factor))
win_length_new = int(np.round(self.win_length * factor))
hop_length_new = int(np.round(self.hop_length * speed))
keyshift_key = str(keyshift) + "_" + str(audio.device)
if keyshift_key not in self.hann_window:
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
audio.device
)
if "privateuseone" in str(audio.device):
if not hasattr(self, "stft"):
self.stft = STFT(
filter_length=n_fft_new,
hop_length=hop_length_new,
win_length=win_length_new,
window="hann",
).to(audio.device)
magnitude = self.stft.transform(audio)
else:
fft = torch.stft(
audio,
n_fft=n_fft_new,
hop_length=hop_length_new,
win_length=win_length_new,
window=self.hann_window[keyshift_key],
center=center,
return_complex=True,
)
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
if keyshift != 0:
size = self.n_fft // 2 + 1
resize = magnitude.size(1)
if resize < size:
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
mel_output = torch.matmul(self.mel_basis, magnitude)
if self.is_half == True:
mel_output = mel_output.half()
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
return log_mel_spec
class RMVPE:
def __init__(self, model_path: str, is_half, device=None, use_jit=False):
self.resample_kernel = {}
self.resample_kernel = {}
self.is_half = is_half
if device is None:
device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.device = device
self.mel_extractor = MelSpectrogram(
is_half, 128, 16000, 1024, 160, None, 30, 8000
).to(device)
if "privateuseone" in str(device):
import onnxruntime as ort
ort_session = ort.InferenceSession(
"%s/rmvpe.onnx" % os.environ["rmvpe_root"],
providers=["DmlExecutionProvider"],
)
self.model = ort_session
else:
if str(self.device) == "cuda":
self.device = torch.device("cuda:0")
def get_jit_model():
jit_model_path = model_path.rstrip(".pth")
jit_model_path += ".half.jit" if is_half else ".jit"
reload = False
if os.path.exists(jit_model_path):
ckpt = jit.load(jit_model_path)
model_device = ckpt["device"]
if model_device != str(self.device):
reload = True
else:
reload = True
if reload:
ckpt = jit.rmvpe_jit_export(
model_path=model_path,
mode="script",
inputs_path=None,
save_path=jit_model_path,
device=device,
is_half=is_half,
)
model = torch.jit.load(BytesIO(ckpt["model"]), map_location=device)
return model
def get_default_model():
model = E2E(4, 1, (2, 2))
ckpt = torch.load(model_path, map_location="cpu")
model.load_state_dict(ckpt)
model.eval()
if is_half:
model = model.half()
else:
model = model.float()
return model
if use_jit:
if is_half and "cpu" in str(self.device):
logger.warning(
"Use default rmvpe model. \
Jit is not supported on the CPU for half floating point"
)
self.model = get_default_model()
else:
self.model = get_jit_model()
else:
self.model = get_default_model()
self.model = self.model.to(device)
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
def mel2hidden(self, mel):
with torch.no_grad():
n_frames = mel.shape[-1]
n_pad = 32 * ((n_frames - 1) // 32 + 1) - n_frames
if n_pad > 0:
mel = F.pad(mel, (0, n_pad), mode="constant")
if "privateuseone" in str(self.device):
onnx_input_name = self.model.get_inputs()[0].name
onnx_outputs_names = self.model.get_outputs()[0].name
hidden = self.model.run(
[onnx_outputs_names],
input_feed={onnx_input_name: mel.cpu().numpy()},
)[0]
else:
mel = mel.half() if self.is_half else mel.float()
hidden = self.model(mel)
return hidden[:, :n_frames]
def decode(self, hidden, thred=0.03):
cents_pred = self.to_local_average_cents(hidden, thred=thred)
f0 = 10 * (2 ** (cents_pred / 1200))
f0[f0 == 10] = 0
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
return f0
def infer_from_audio(self, audio, thred=0.03):
# torch.cuda.synchronize()
t0 = ttime()
mel = self.mel_extractor(
torch.from_numpy(audio).float().to(self.device).unsqueeze(0), center=True
)
# print(123123123,mel.device.type)
# torch.cuda.synchronize()
t1 = ttime()
hidden = self.mel2hidden(mel)
# torch.cuda.synchronize()
t2 = ttime()
# print(234234,hidden.device.type)
if "privateuseone" not in str(self.device):
hidden = hidden.squeeze(0).cpu().numpy()
else:
hidden = hidden[0]
if self.is_half == True:
hidden = hidden.astype("float32")
f0 = self.decode(hidden, thred=thred)
# torch.cuda.synchronize()
t3 = ttime()
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
return f0
def to_local_average_cents(self, salience, thred=0.05):
# t0 = ttime()
center = np.argmax(salience, axis=1) # 帧长#index
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
# t1 = ttime()
center += 4
todo_salience = []
todo_cents_mapping = []
starts = center - 4
ends = center + 5
for idx in range(salience.shape[0]):
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
# t2 = ttime()
todo_salience = np.array(todo_salience) # 帧长,9
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
weight_sum = np.sum(todo_salience, 1) # 帧长
devided = product_sum / weight_sum # 帧长
# t3 = ttime()
maxx = np.max(salience, axis=1) # 帧长
devided[maxx <= thred] = 0
# t4 = ttime()
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
return devided
if __name__ == "__main__":
import librosa
import soundfile as sf
audio, sampling_rate = sf.read(r"C:\Users\liujing04\Desktop\Z\冬之花clip1.wav")
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
audio_bak = audio.copy()
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
model_path = r"D:\BaiduNetdiskDownload\RVC-beta-v2-0727AMD_realtime\rmvpe.pt"
thred = 0.03 # 0.01
device = "cuda" if torch.cuda.is_available() else "cpu"
rmvpe = RMVPE(model_path, is_half=False, device=device)
t0 = ttime()
f0 = rmvpe.infer_from_audio(audio, thred=thred)
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
t1 = ttime()
logger.info("%s %.2f", f0.shape, t1 - t0)
|