Spaces:
Sleeping
Sleeping
File size: 16,630 Bytes
a6eee43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
import copy
import math
import numpy as np
import scipy
import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, remove_weight_norm
from lib.infer_pack import commons
from lib.infer_pack.commons import init_weights, get_padding
from lib.infer_pack.transforms import piecewise_rational_quadratic_transform
LRELU_SLOPE = 0.1
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-5):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
x = x.transpose(1, -1)
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
return x.transpose(1, -1)
class ConvReluNorm(nn.Module):
def __init__(
self,
in_channels,
hidden_channels,
out_channels,
kernel_size,
n_layers,
p_dropout,
):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
assert n_layers > 1, "Number of layers should be larger than 0."
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.conv_layers.append(
nn.Conv1d(
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
)
)
self.norm_layers.append(LayerNorm(hidden_channels))
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
for _ in range(n_layers - 1):
self.conv_layers.append(
nn.Conv1d(
hidden_channels,
hidden_channels,
kernel_size,
padding=kernel_size // 2,
)
)
self.norm_layers.append(LayerNorm(hidden_channels))
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask):
x_org = x
for i in range(self.n_layers):
x = self.conv_layers[i](x * x_mask)
x = self.norm_layers[i](x)
x = self.relu_drop(x)
x = x_org + self.proj(x)
return x * x_mask
class DDSConv(nn.Module):
"""
Dialted and Depth-Separable Convolution
"""
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
super().__init__()
self.channels = channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
self.drop = nn.Dropout(p_dropout)
self.convs_sep = nn.ModuleList()
self.convs_1x1 = nn.ModuleList()
self.norms_1 = nn.ModuleList()
self.norms_2 = nn.ModuleList()
for i in range(n_layers):
dilation = kernel_size**i
padding = (kernel_size * dilation - dilation) // 2
self.convs_sep.append(
nn.Conv1d(
channels,
channels,
kernel_size,
groups=channels,
dilation=dilation,
padding=padding,
)
)
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
self.norms_1.append(LayerNorm(channels))
self.norms_2.append(LayerNorm(channels))
def forward(self, x, x_mask, g=None):
if g is not None:
x = x + g
for i in range(self.n_layers):
y = self.convs_sep[i](x * x_mask)
y = self.norms_1[i](y)
y = F.gelu(y)
y = self.convs_1x1[i](y)
y = self.norms_2[i](y)
y = F.gelu(y)
y = self.drop(y)
x = x + y
return x * x_mask
class WN(torch.nn.Module):
def __init__(
self,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0,
p_dropout=0,
):
super(WN, self).__init__()
assert kernel_size % 2 == 1
self.hidden_channels = hidden_channels
self.kernel_size = (kernel_size,)
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.p_dropout = p_dropout
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.drop = nn.Dropout(p_dropout)
if gin_channels != 0:
cond_layer = torch.nn.Conv1d(
gin_channels, 2 * hidden_channels * n_layers, 1
)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
for i in range(n_layers):
dilation = dilation_rate**i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(
hidden_channels,
2 * hidden_channels,
kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * hidden_channels
else:
res_skip_channels = hidden_channels
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
self.res_skip_layers.append(res_skip_layer)
def forward(self, x, x_mask, g=None, **kwargs):
output = torch.zeros_like(x)
n_channels_tensor = torch.IntTensor([self.hidden_channels])
if g is not None:
g = self.cond_layer(g)
for i in range(self.n_layers):
x_in = self.in_layers[i](x)
if g is not None:
cond_offset = i * 2 * self.hidden_channels
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
else:
g_l = torch.zeros_like(x_in)
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
acts = self.drop(acts)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
res_acts = res_skip_acts[:, : self.hidden_channels, :]
x = (x + res_acts) * x_mask
output = output + res_skip_acts[:, self.hidden_channels :, :]
else:
output = output + res_skip_acts
return output * x_mask
def remove_weight_norm(self):
if self.gin_channels != 0:
torch.nn.utils.remove_weight_norm(self.cond_layer)
for l in self.in_layers:
torch.nn.utils.remove_weight_norm(l)
for l in self.res_skip_layers:
torch.nn.utils.remove_weight_norm(l)
class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.convs1 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs1.apply(init_weights)
self.convs2 = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
]
)
self.convs2.apply(init_weights)
def forward(self, x, x_mask=None):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c2(xt)
x = xt + x
if x_mask is not None:
x = x * x_mask
return x
def remove_weight_norm(self):
for l in self.convs1:
remove_weight_norm(l)
for l in self.convs2:
remove_weight_norm(l)
class ResBlock2(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.convs = nn.ModuleList(
[
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
]
)
self.convs.apply(init_weights)
def forward(self, x, x_mask=None):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
if x_mask is not None:
xt = xt * x_mask
xt = c(xt)
x = xt + x
if x_mask is not None:
x = x * x_mask
return x
def remove_weight_norm(self):
for l in self.convs:
remove_weight_norm(l)
class Log(nn.Module):
def forward(self, x, x_mask, reverse=False, **kwargs):
if not reverse:
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
logdet = torch.sum(-y, [1, 2])
return y, logdet
else:
x = torch.exp(x) * x_mask
return x
class Flip(nn.Module):
def forward(self, x, *args, reverse=False, **kwargs):
x = torch.flip(x, [1])
if not reverse:
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
return x, logdet
else:
return x
class ElementwiseAffine(nn.Module):
def __init__(self, channels):
super().__init__()
self.channels = channels
self.m = nn.Parameter(torch.zeros(channels, 1))
self.logs = nn.Parameter(torch.zeros(channels, 1))
def forward(self, x, x_mask, reverse=False, **kwargs):
if not reverse:
y = self.m + torch.exp(self.logs) * x
y = y * x_mask
logdet = torch.sum(self.logs * x_mask, [1, 2])
return y, logdet
else:
x = (x - self.m) * torch.exp(-self.logs) * x_mask
return x
class ResidualCouplingLayer(nn.Module):
def __init__(
self,
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
p_dropout=0,
gin_channels=0,
mean_only=False,
):
assert channels % 2 == 0, "channels should be divisible by 2"
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.half_channels = channels // 2
self.mean_only = mean_only
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
self.enc = WN(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
p_dropout=p_dropout,
gin_channels=gin_channels,
)
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
self.post.weight.data.zero_()
self.post.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
h = self.pre(x0) * x_mask
h = self.enc(h, x_mask, g=g)
stats = self.post(h) * x_mask
if not self.mean_only:
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
else:
m = stats
logs = torch.zeros_like(m)
if not reverse:
x1 = m + x1 * torch.exp(logs) * x_mask
x = torch.cat([x0, x1], 1)
logdet = torch.sum(logs, [1, 2])
return x, logdet
else:
x1 = (x1 - m) * torch.exp(-logs) * x_mask
x = torch.cat([x0, x1], 1)
return x
def remove_weight_norm(self):
self.enc.remove_weight_norm()
class ConvFlow(nn.Module):
def __init__(
self,
in_channels,
filter_channels,
kernel_size,
n_layers,
num_bins=10,
tail_bound=5.0,
):
super().__init__()
self.in_channels = in_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.num_bins = num_bins
self.tail_bound = tail_bound
self.half_channels = in_channels // 2
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
self.proj = nn.Conv1d(
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
h = self.pre(x0)
h = self.convs(h, x_mask, g=g)
h = self.proj(h) * x_mask
b, c, t = x0.shape
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
self.filter_channels
)
unnormalized_derivatives = h[..., 2 * self.num_bins :]
x1, logabsdet = piecewise_rational_quadratic_transform(
x1,
unnormalized_widths,
unnormalized_heights,
unnormalized_derivatives,
inverse=reverse,
tails="linear",
tail_bound=self.tail_bound,
)
x = torch.cat([x0, x1], 1) * x_mask
logdet = torch.sum(logabsdet * x_mask, [1, 2])
if not reverse:
return x, logdet
else:
return x
|