File size: 21,437 Bytes
058946e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
063007b
19d9877
 
063007b
5a065a9
6378aa9
 
 
 
058946e
 
 
 
 
 
 
61a449e
058946e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20d1f73
 
531dc6f
 
5a065a9
 
 
 
 
 
 
 
 
 
 
 
2dcaf1e
5a065a9
19d9877
d4a4126
70b1804
d4a4126
70b1804
 
d4a4126
 
2b04bca
 
d4a4126
 
2b04bca
 
063007b
 
 
058946e
 
 
d5547f7
058946e
a178205
058946e
 
20d1f73
058946e
a178205
058946e
 
 
 
 
 
48844f7
058946e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628f018
058946e
 
 
7133f27
ae42e7b
6d8d14c
058946e
 
 
 
6d8d14c
0df2b65
058946e
 
 
a178205
058946e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b44b510
058946e
b44b510
058946e
b44b510
058946e
 
b44b510
 
058946e
 
 
7574a38
cf1d664
7574a38
058946e
 
e295e9c
058946e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70b1804
058946e
 
 
 
 
 
 
 
 
70b1804
 
058946e
 
 
70b1804
9e8f99e
058946e
 
d4a4126
 
 
9e8f99e
ee81677
7337797
 
 
 
 
 
9e8f99e
d4a4126
 
 
b9c2ec2
058946e
70b1804
 
d4a4126
 
 
 
7c607b7
d4a4126
 
058946e
d4a4126
058946e
3423c18
ea7e28a
6378aa9
51f5ed2
 
6378aa9
 
 
 
 
fe273ac
 
4287b9c
058946e
d4a4126
 
 
 
 
 
 
 
 
 
058946e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5915f
19c1074
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
import torch, os, traceback, sys, warnings, shutil, numpy as np
import gradio as gr
import librosa
import asyncio
import rarfile
import edge_tts
import yt_dlp
import ffmpeg
import gdown
import subprocess
import wave
import soundfile as sf
from scipy.io import wavfile
from datetime import datetime
from urllib.parse import urlparse
from mega import Mega
from flask import Flask, request, jsonify, send_file
import base64
import tempfile
import os
import werkzeug
from pydub import AudioSegment



app = Flask(__name__)

now_dir = os.getcwd()
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.environ["TEMP"] = tmp
split_model="htdemucs"
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from fairseq import checkpoint_utils
from vc_infer_pipeline import VC
from config import Config
config = Config()

tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]

hubert_model = None

f0method_mode = ["pm", "harvest", "crepe"]
f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"

if os.path.isfile("rmvpe.pt"):
    f0method_mode.insert(2, "rmvpe")
    f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"

def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()

load_hubert()

weight_root = "weights"
index_root = "weights/index"
weights_model = []
weights_index = []
for _, _, model_files in os.walk(weight_root):
    for file in model_files:
        if file.endswith(".pth"):
            weights_model.append(file)
for _, _, index_files in os.walk(index_root):
    for file in index_files:
        if file.endswith('.index') and "trained" not in file:
            weights_index.append(os.path.join(index_root, file))

def check_models():
    weights_model = []
    weights_index = []
    for _, _, model_files in os.walk(weight_root):
        for file in model_files:
            if file.endswith(".pth"):
                weights_model.append(file)
    for _, _, index_files in os.walk(index_root):
        for file in index_files:
            if file.endswith('.index') and "trained" not in file:
                weights_index.append(os.path.join(index_root, file))
    return (
        gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
        gr.Dropdown.update(choices=sorted(weights_index))
    )

def clean():
    return (
        gr.Dropdown.update(value=""),
        gr.Slider.update(visible=False)
    )



@app.route('/convert_voice', methods=['POST'])
def api_convert_voice():
    spk_id = request.form['spk_id']
    voice_transform = request.form['voice_transform']

    # The file part
    if 'file' not in request.files:
        return jsonify({"error": "No file part"}), 400
    file = request.files['file']
    if file.filename == '':
        return jsonify({"error": "No selected file"}), 400

    # Save the file to a temporary path
    filename = werkzeug.utils.secure_filename(file.filename)
    input_audio_path = os.path.join(tmp, f"{spk_id}_input_audio.{filename.split('.')[-1]}")
    file.save(input_audio_path)
    
    #split audio
    cut_vocal_and_inst(input_audio_path,spk_id)
    print("audio splitting performed")
    vocal_path = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
    inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
    
    output_path = convert_voice(spk_id, vocal_path, voice_transform)
    output_path1= combine_vocal_and_inst(output_path,inst)
    print(output_path1)
    
    
    if os.path.exists(output_path1):
        return send_file(output_path1, as_attachment=True)
    else:
        return jsonify({"error": "File not found."}), 404
    


def convert_voice(spk_id, input_audio_path, voice_transform):
    get_vc(spk_id,0.5)
    output_audio_path = vc_single(
        sid=0,
        input_audio_path=input_audio_path,
        f0_up_key=voice_transform,  # Assuming voice_transform corresponds to f0_up_key
        f0_file=None ,
        f0_method="rmvpe",
        file_index=spk_id,  # Assuming file_index_path corresponds to file_index
        index_rate=0.75,
        filter_radius=3,
        resample_sr=0,
        rms_mix_rate=0.25,
        protect=0.33  # Adjusted from protect_rate to protect to match the function signature
    )
    print(output_audio_path)
    return output_audio_path


def vc_single(
    sid,
    input_audio_path,    
    f0_up_key,
    f0_file,
    f0_method,
    file_index,
    index_rate,
    filter_radius,
    resample_sr,
    rms_mix_rate,
    protect
):  # spk_item, input_audio0, vc_transform0,f0_file,f0method0
    global tgt_sr, net_g, vc, hubert_model, version, cpt
    
    try:
        logs = []
        print(f"Converting...")
        
        audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
        print(f"found audio ")
        f0_up_key = int(f0_up_key)
        times = [0, 0, 0]
        if hubert_model == None:
            load_hubert()
        print("loaded hubert")
        if_f0 = 1
        audio_opt = vc.pipeline(
            hubert_model,
            net_g,
            0,
            audio,
            input_audio_path,
            times,
            f0_up_key,
            f0_method,
            file_index,
            # file_big_npy,
            index_rate,
            if_f0,
            filter_radius,
            tgt_sr,
            resample_sr,
            rms_mix_rate,
            version,
            protect,
            f0_file=f0_file
        )
        if resample_sr >= 16000 and tgt_sr != resample_sr:
            tgt_sr = resample_sr
        index_info = (
            "Using index:%s." % file_index
            if os.path.exists(file_index)
            else "Index not used."
        )
        print("writing to FS")
        output_file_path = os.path.join("output", f"converted_audio_{sid}.wav")  # Adjust path as needed
        
        os.makedirs(os.path.dirname(output_file_path), exist_ok=True)  # Create the output directory if it doesn't exist
        print("create dir")
        # Save the audio file using the target sampling rate
        sf.write(output_file_path, audio_opt, tgt_sr)
        
        print("wrote to FS")

        # Return the path to the saved file along with any other information
        
        return output_file_path
           
            
    except:
        info = traceback.format_exc()
        
        return info, (None, None)

def get_vc(sid, to_return_protect0):
    global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
    if sid == "" or sid == []:
        global hubert_model
        if hubert_model is not None:  # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
            print("clean_empty_cache")
            del net_g, n_spk, vc, hubert_model, tgt_sr  # ,cpt
            hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            ###楼下不这么折腾清理不干净
            if_f0 = cpt.get("f0", 1)
            version = cpt.get("version", "v1")
            if version == "v1":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs256NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
            elif version == "v2":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs768NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
            del net_g, cpt
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            cpt = None
        return (
            gr.Slider.update(maximum=2333, visible=False),
            gr.Slider.update(visible=True),
            gr.Dropdown.update(choices=sorted(weights_index), value=""),
            gr.Markdown.update(value="# <center> No model selected")
        )
    print(f"Loading {sid} model...")
    selected_model = sid[:-4]
    cpt = torch.load(os.path.join(weight_root, sid), map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
    if_f0 = cpt.get("f0", 1)
    if if_f0 == 0:
        to_return_protect0 = {
            "visible": False,
            "value": 0.5,
            "__type__": "update",
        }
    else:
        to_return_protect0 = {
            "visible": True,
            "value": to_return_protect0,
            "__type__": "update",
        }
    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    del net_g.enc_q
    print(net_g.load_state_dict(cpt["weight"], strict=False))
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)
    n_spk = cpt["config"][-3]
    weights_index = []
    for _, _, index_files in os.walk(index_root):
        for file in index_files:
            if file.endswith('.index') and "trained" not in file:
                weights_index.append(os.path.join(index_root, file))
    if weights_index == []:
        selected_index = gr.Dropdown.update(value="")
    else:
        selected_index = gr.Dropdown.update(value=weights_index[0])
    for index, model_index in enumerate(weights_index):
        if selected_model in model_index:
            selected_index = gr.Dropdown.update(value=weights_index[index])
            break
    return (
        gr.Slider.update(maximum=n_spk, visible=True),
        to_return_protect0,
        selected_index,
        gr.Markdown.update(
            f'## <center> {selected_model}\n'+
            f'### <center> RVC {version} Model'
        )
    )

def find_audio_files(folder_path, extensions):
    audio_files = []
    for root, dirs, files in os.walk(folder_path):
        for file in files:
            if any(file.endswith(ext) for ext in extensions):
                audio_files.append(file)
    return audio_files

def vc_multi(
    spk_item,
    vc_input,
    vc_output,
    vc_transform0,
    f0method0,
    file_index,
    index_rate,
    filter_radius,
    resample_sr,
    rms_mix_rate,
    protect,
):
    global tgt_sr, net_g, vc, hubert_model, version, cpt
    logs = []
    logs.append("Converting...")
    yield "\n".join(logs)
    print()
    try:
        if os.path.exists(vc_input):
            folder_path = vc_input
            extensions = [".mp3", ".wav", ".flac", ".ogg"]
            audio_files = find_audio_files(folder_path, extensions)
            for index, file in enumerate(audio_files, start=1):
                audio, sr = librosa.load(os.path.join(folder_path, file), sr=16000, mono=True)
                input_audio_path = folder_path, file
                f0_up_key = int(vc_transform0)
                times = [0, 0, 0]
                if hubert_model == None:
                    load_hubert()
                if_f0 = cpt.get("f0", 1)
                audio_opt = vc.pipeline(
                    hubert_model,
                    net_g,
                    spk_item,
                    audio,
                    input_audio_path,
                    times,
                    f0_up_key,
                    f0method0,
                    file_index,
                    index_rate,
                    if_f0,
                    filter_radius,
                    tgt_sr,
                    resample_sr,
                    rms_mix_rate,
                    version,
                    protect,
                    f0_file=None
                )
                if resample_sr >= 16000 and tgt_sr != resample_sr:
                    tgt_sr = resample_sr
                output_path = f"{os.path.join(vc_output, file)}"
                os.makedirs(os.path.join(vc_output), exist_ok=True)
                sf.write(
                    output_path,
                    audio_opt,
                    tgt_sr,
                )
                info = f"{index} / {len(audio_files)} | {file}"
                print(info)
                logs.append(info)
                yield "\n".join(logs)
        else:
            logs.append("Folder not found or path doesn't exist.")
            yield "\n".join(logs)
    except:
        info = traceback.format_exc()
        print(info)
        logs.append(info)
        yield "\n".join(logs)

def download_audio(url, audio_provider):
    logs = []
    os.makedirs("dl_audio", exist_ok=True)
    if url == "":
        logs.append("URL required!")
        yield None, "\n".join(logs)
        return None, "\n".join(logs)
    if audio_provider == "Youtube":
        logs.append("Downloading the audio...")
        yield None, "\n".join(logs)
        ydl_opts = {
            'noplaylist': True,
            'format': 'bestaudio/best',
            'postprocessors': [{
                'key': 'FFmpegExtractAudio',
                'preferredcodec': 'wav',
            }],
            "outtmpl": 'result/dl_audio/audio',
        }
        audio_path = "result/dl_audio/audio.wav"
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            ydl.download([url])
        logs.append("Download Complete.")
        yield audio_path, "\n".join(logs)

def cut_vocal_and_inst_yt(split_model,spk_id):
    logs = []
    logs.append("Starting the audio splitting process...")
    yield "\n".join(logs), None, None, None
    command = f"demucs --two-stems=vocals -n {split_model} result/dl_audio/audio.wav -o output"
    result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
    for line in result.stdout:
        logs.append(line)
        yield "\n".join(logs), None, None, None
    print(result.stdout)
    vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
    inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
    logs.append("Audio splitting complete.")
    yield "\n".join(logs), vocal, inst, vocal

def cut_vocal_and_inst(audio_path,spk_id):
    
    vocal_path = "output/result/audio.wav"
    os.makedirs("output/result", exist_ok=True)
    #wavfile.write(vocal_path, audio_data[0], audio_data[1])
    #logs.append("Starting the audio splitting process...")
    #yield "\n".join(logs), None, None
    print("before executing splitter")
    command = f"demucs --two-stems=vocals -n {split_model} {audio_path} -o output"
    #result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
    result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
    if result.returncode != 0:
        print("Demucs process failed:", result.stderr)
    else:
        print("Demucs process completed successfully.")
    print("after executing splitter")
    #for line in result.stdout:
    #    logs.append(line)
    #    yield "\n".join(logs), None, None
    
    print(result.stdout)
    vocal = f"output/{split_model}/{spk_id}_input_audio/vocals.wav"
    inst = f"output/{split_model}/{spk_id}_input_audio/no_vocals.wav"
    #logs.append("Audio splitting complete.")


def combine_vocal_and_inst(vocal_path, inst_path):
    
    vocal_volume=1
    inst_volume=1
    os.makedirs("output/result", exist_ok=True)
    # Assuming vocal_path and inst_path are now directly passed as arguments
    output_path = "output/result/combine.mp3"
    #command = f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame "{output_path}"'
    #command=f'ffmpeg -y -i "{inst_path}" -i "{vocal_path}" -filter_complex "amix=inputs=2:duration=longest" -b:a 320k -c:a libmp3lame "{output_path}"'
    # Load the audio files
    vocal = AudioSegment.from_file(vocal_path)
    instrumental = AudioSegment.from_file(inst_path)

# Overlay the vocal track on top of the instrumental track
    combined = vocal.overlay(instrumental)

# Export the result
    combined.export(output_path, format="mp3")

    #result = subprocess.run(command.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    return output_path
    
#def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume):
#    os.makedirs("output/result", exist_ok=True)
 ##  output_path = "output/result/combine.mp3"
   # inst_path = f"output/{split_model}/audio/no_vocals.wav"
    #wavfile.write(vocal_path, audio_data[0], audio_data[1])
    #command =  f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
    #result = subprocess.run(command.split(), stdout=subprocess.PIPE)
    #print(result.stdout.decode())
    #return output_path

def download_and_extract_models(urls):
    logs = []
    os.makedirs("zips", exist_ok=True)
    os.makedirs(os.path.join("zips", "extract"), exist_ok=True)
    os.makedirs(os.path.join(weight_root), exist_ok=True)
    os.makedirs(os.path.join(index_root), exist_ok=True)
    for link in urls.splitlines():
        url = link.strip()
        if not url:
            raise gr.Error("URL Required!")
            return "No URLs provided."
        model_zip = urlparse(url).path.split('/')[-2] + '.zip'
        model_zip_path = os.path.join('zips', model_zip)
        logs.append(f"Downloading...")
        yield "\n".join(logs)
        if "drive.google.com" in url:
            gdown.download(url, os.path.join("zips", "extract"), quiet=False)
        elif "mega.nz" in url:
            m = Mega()
            m.download_url(url, 'zips')
        else:
            os.system(f"wget {url} -O {model_zip_path}")
        logs.append(f"Extracting...")
        yield "\n".join(logs)
        for filename in os.listdir("zips"):
            archived_file = os.path.join("zips", filename)
            if filename.endswith(".zip"):
                shutil.unpack_archive(archived_file, os.path.join("zips", "extract"), 'zip')
            elif filename.endswith(".rar"):
                with rarfile.RarFile(archived_file, 'r') as rar:
                    rar.extractall(os.path.join("zips", "extract"))
        for _, dirs, files in os.walk(os.path.join("zips", "extract")):
            logs.append(f"Searching Model and Index...")
            yield "\n".join(logs)
            model = False
            index = False
            if files:
                for file in files:
                    if file.endswith(".pth"):
                        basename = file[:-4]
                        shutil.move(os.path.join("zips", "extract", file), os.path.join(weight_root, file))
                        model = True
                    if file.endswith('.index') and "trained" not in file:
                        shutil.move(os.path.join("zips", "extract", file), os.path.join(index_root, file))
                        index = True
            else:
                logs.append("No model in main folder.")
                yield "\n".join(logs)
                logs.append("Searching in subfolders...")
                yield "\n".join(logs)
                for sub_dir in dirs:
                    for _, _, sub_files in os.walk(os.path.join("zips", "extract", sub_dir)):
                        for file in sub_files:
                            if file.endswith(".pth"):
                                basename = file[:-4]
                                shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(weight_root, file))
                                model = True
                            if file.endswith('.index') and "trained" not in file:
                                shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(index_root, file))
                                index = True  
                        shutil.rmtree(os.path.join("zips", "extract", sub_dir))
            if index is False:
                logs.append("Model only file, no Index file detected.")
                yield "\n".join(logs)
        logs.append("Download Completed!")
        yield "\n".join(logs)
    logs.append("Successfully download all models! Refresh your model list to load the model")
    yield "\n".join(logs)
if __name__ == '__main__':
    app.run(debug=False, port=5000,host='0.0.0.0')