File size: 23,996 Bytes
e32dff3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
from io import BytesIO
import os
from typing import List, Optional, Tuple
import numpy as np
import torch

from infer.lib import jit

try:
    # Fix "Torch not compiled with CUDA enabled"
    import intel_extension_for_pytorch as ipex  # pylint: disable=import-error, unused-import

    if torch.xpu.is_available():
        from infer.modules.ipex import ipex_init

        ipex_init()
except Exception:  # pylint: disable=broad-exception-caught
    pass
import torch.nn as nn
import torch.nn.functional as F
from librosa.util import normalize, pad_center, tiny
from scipy.signal import get_window

import logging

logger = logging.getLogger(__name__)


class STFT(torch.nn.Module):
    def __init__(
        self, filter_length=1024, hop_length=512, win_length=None, window="hann"
    ):
        """
        This module implements an STFT using 1D convolution and 1D transpose convolutions.
        This is a bit tricky so there are some cases that probably won't work as working
        out the same sizes before and after in all overlap add setups is tough. Right now,
        this code should work with hop lengths that are half the filter length (50% overlap
        between frames).

        Keyword Arguments:
            filter_length {int} -- Length of filters used (default: {1024})
            hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
            win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
                equals the filter length). (default: {None})
            window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris)
                (default: {'hann'})
        """
        super(STFT, self).__init__()
        self.filter_length = filter_length
        self.hop_length = hop_length
        self.win_length = win_length if win_length else filter_length
        self.window = window
        self.forward_transform = None
        self.pad_amount = int(self.filter_length / 2)
        fourier_basis = np.fft.fft(np.eye(self.filter_length))

        cutoff = int((self.filter_length / 2 + 1))
        fourier_basis = np.vstack(
            [np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
        )
        forward_basis = torch.FloatTensor(fourier_basis)
        inverse_basis = torch.FloatTensor(np.linalg.pinv(fourier_basis))

        assert filter_length >= self.win_length
        # get window and zero center pad it to filter_length
        fft_window = get_window(window, self.win_length, fftbins=True)
        fft_window = pad_center(fft_window, size=filter_length)
        fft_window = torch.from_numpy(fft_window).float()

        # window the bases
        forward_basis *= fft_window
        inverse_basis = (inverse_basis.T * fft_window).T

        self.register_buffer("forward_basis", forward_basis.float())
        self.register_buffer("inverse_basis", inverse_basis.float())
        self.register_buffer("fft_window", fft_window.float())

    def transform(self, input_data, return_phase=False):
        """Take input data (audio) to STFT domain.

        Arguments:
            input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)

        Returns:
            magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
                num_frequencies, num_frames)
            phase {tensor} -- Phase of STFT with shape (num_batch,
                num_frequencies, num_frames)
        """
        input_data = F.pad(
            input_data,
            (self.pad_amount, self.pad_amount),
            mode="reflect",
        )
        forward_transform = input_data.unfold(
            1, self.filter_length, self.hop_length
        ).permute(0, 2, 1)
        forward_transform = torch.matmul(self.forward_basis, forward_transform)
        cutoff = int((self.filter_length / 2) + 1)
        real_part = forward_transform[:, :cutoff, :]
        imag_part = forward_transform[:, cutoff:, :]
        magnitude = torch.sqrt(real_part**2 + imag_part**2)
        if return_phase:
            phase = torch.atan2(imag_part.data, real_part.data)
            return magnitude, phase
        else:
            return magnitude

    def inverse(self, magnitude, phase):
        """Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
        by the ```transform``` function.

        Arguments:
            magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
                num_frequencies, num_frames)
            phase {tensor} -- Phase of STFT with shape (num_batch,
                num_frequencies, num_frames)

        Returns:
            inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
                shape (num_batch, num_samples)
        """
        cat = torch.cat(
            [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
        )
        fold = torch.nn.Fold(
            output_size=(1, (cat.size(-1) - 1) * self.hop_length + self.filter_length),
            kernel_size=(1, self.filter_length),
            stride=(1, self.hop_length),
        )
        inverse_transform = torch.matmul(self.inverse_basis, cat)
        inverse_transform = fold(inverse_transform)[
            :, 0, 0, self.pad_amount : -self.pad_amount
        ]
        window_square_sum = (
            self.fft_window.pow(2).repeat(cat.size(-1), 1).T.unsqueeze(0)
        )
        window_square_sum = fold(window_square_sum)[
            :, 0, 0, self.pad_amount : -self.pad_amount
        ]
        inverse_transform /= window_square_sum
        return inverse_transform

    def forward(self, input_data):
        """Take input data (audio) to STFT domain and then back to audio.

        Arguments:
            input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)

        Returns:
            reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of
                shape (num_batch, num_samples)
        """
        self.magnitude, self.phase = self.transform(input_data, return_phase=True)
        reconstruction = self.inverse(self.magnitude, self.phase)
        return reconstruction


from time import time as ttime


class BiGRU(nn.Module):
    def __init__(self, input_features, hidden_features, num_layers):
        super(BiGRU, self).__init__()
        self.gru = nn.GRU(
            input_features,
            hidden_features,
            num_layers=num_layers,
            batch_first=True,
            bidirectional=True,
        )

    def forward(self, x):
        return self.gru(x)[0]


class ConvBlockRes(nn.Module):
    def __init__(self, in_channels, out_channels, momentum=0.01):
        super(ConvBlockRes, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=(3, 3),
                stride=(1, 1),
                padding=(1, 1),
                bias=False,
            ),
            nn.BatchNorm2d(out_channels, momentum=momentum),
            nn.ReLU(),
            nn.Conv2d(
                in_channels=out_channels,
                out_channels=out_channels,
                kernel_size=(3, 3),
                stride=(1, 1),
                padding=(1, 1),
                bias=False,
            ),
            nn.BatchNorm2d(out_channels, momentum=momentum),
            nn.ReLU(),
        )
        # self.shortcut:Optional[nn.Module] = None
        if in_channels != out_channels:
            self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))

    def forward(self, x: torch.Tensor):
        if not hasattr(self, "shortcut"):
            return self.conv(x) + x
        else:
            return self.conv(x) + self.shortcut(x)


class Encoder(nn.Module):
    def __init__(
        self,
        in_channels,
        in_size,
        n_encoders,
        kernel_size,
        n_blocks,
        out_channels=16,
        momentum=0.01,
    ):
        super(Encoder, self).__init__()
        self.n_encoders = n_encoders
        self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
        self.layers = nn.ModuleList()
        self.latent_channels = []
        for i in range(self.n_encoders):
            self.layers.append(
                ResEncoderBlock(
                    in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
                )
            )
            self.latent_channels.append([out_channels, in_size])
            in_channels = out_channels
            out_channels *= 2
            in_size //= 2
        self.out_size = in_size
        self.out_channel = out_channels

    def forward(self, x: torch.Tensor):
        concat_tensors: List[torch.Tensor] = []
        x = self.bn(x)
        for i, layer in enumerate(self.layers):
            t, x = layer(x)
            concat_tensors.append(t)
        return x, concat_tensors


class ResEncoderBlock(nn.Module):
    def __init__(
        self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
    ):
        super(ResEncoderBlock, self).__init__()
        self.n_blocks = n_blocks
        self.conv = nn.ModuleList()
        self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
        for i in range(n_blocks - 1):
            self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
        self.kernel_size = kernel_size
        if self.kernel_size is not None:
            self.pool = nn.AvgPool2d(kernel_size=kernel_size)

    def forward(self, x):
        for i, conv in enumerate(self.conv):
            x = conv(x)
        if self.kernel_size is not None:
            return x, self.pool(x)
        else:
            return x


class Intermediate(nn.Module):  #
    def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
        super(Intermediate, self).__init__()
        self.n_inters = n_inters
        self.layers = nn.ModuleList()
        self.layers.append(
            ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
        )
        for i in range(self.n_inters - 1):
            self.layers.append(
                ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
            )

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = layer(x)
        return x


class ResDecoderBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
        super(ResDecoderBlock, self).__init__()
        out_padding = (0, 1) if stride == (1, 2) else (1, 1)
        self.n_blocks = n_blocks
        self.conv1 = nn.Sequential(
            nn.ConvTranspose2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=(3, 3),
                stride=stride,
                padding=(1, 1),
                output_padding=out_padding,
                bias=False,
            ),
            nn.BatchNorm2d(out_channels, momentum=momentum),
            nn.ReLU(),
        )
        self.conv2 = nn.ModuleList()
        self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
        for i in range(n_blocks - 1):
            self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))

    def forward(self, x, concat_tensor):
        x = self.conv1(x)
        x = torch.cat((x, concat_tensor), dim=1)
        for i, conv2 in enumerate(self.conv2):
            x = conv2(x)
        return x


class Decoder(nn.Module):
    def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
        super(Decoder, self).__init__()
        self.layers = nn.ModuleList()
        self.n_decoders = n_decoders
        for i in range(self.n_decoders):
            out_channels = in_channels // 2
            self.layers.append(
                ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
            )
            in_channels = out_channels

    def forward(self, x: torch.Tensor, concat_tensors: List[torch.Tensor]):
        for i, layer in enumerate(self.layers):
            x = layer(x, concat_tensors[-1 - i])
        return x


class DeepUnet(nn.Module):
    def __init__(
        self,
        kernel_size,
        n_blocks,
        en_de_layers=5,
        inter_layers=4,
        in_channels=1,
        en_out_channels=16,
    ):
        super(DeepUnet, self).__init__()
        self.encoder = Encoder(
            in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
        )
        self.intermediate = Intermediate(
            self.encoder.out_channel // 2,
            self.encoder.out_channel,
            inter_layers,
            n_blocks,
        )
        self.decoder = Decoder(
            self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x, concat_tensors = self.encoder(x)
        x = self.intermediate(x)
        x = self.decoder(x, concat_tensors)
        return x


class E2E(nn.Module):
    def __init__(
        self,
        n_blocks,
        n_gru,
        kernel_size,
        en_de_layers=5,
        inter_layers=4,
        in_channels=1,
        en_out_channels=16,
    ):
        super(E2E, self).__init__()
        self.unet = DeepUnet(
            kernel_size,
            n_blocks,
            en_de_layers,
            inter_layers,
            in_channels,
            en_out_channels,
        )
        self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
        if n_gru:
            self.fc = nn.Sequential(
                BiGRU(3 * 128, 256, n_gru),
                nn.Linear(512, 360),
                nn.Dropout(0.25),
                nn.Sigmoid(),
            )
        else:
            self.fc = nn.Sequential(
                nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
            )

    def forward(self, mel):
        # print(mel.shape)
        mel = mel.transpose(-1, -2).unsqueeze(1)
        x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
        x = self.fc(x)
        # print(x.shape)
        return x


from librosa.filters import mel


class MelSpectrogram(torch.nn.Module):
    def __init__(
        self,
        is_half,
        n_mel_channels,
        sampling_rate,
        win_length,
        hop_length,
        n_fft=None,
        mel_fmin=0,
        mel_fmax=None,
        clamp=1e-5,
    ):
        super().__init__()
        n_fft = win_length if n_fft is None else n_fft
        self.hann_window = {}
        mel_basis = mel(
            sr=sampling_rate,
            n_fft=n_fft,
            n_mels=n_mel_channels,
            fmin=mel_fmin,
            fmax=mel_fmax,
            htk=True,
        )
        mel_basis = torch.from_numpy(mel_basis).float()
        self.register_buffer("mel_basis", mel_basis)
        self.n_fft = win_length if n_fft is None else n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        self.sampling_rate = sampling_rate
        self.n_mel_channels = n_mel_channels
        self.clamp = clamp
        self.is_half = is_half

    def forward(self, audio, keyshift=0, speed=1, center=True):
        factor = 2 ** (keyshift / 12)
        n_fft_new = int(np.round(self.n_fft * factor))
        win_length_new = int(np.round(self.win_length * factor))
        hop_length_new = int(np.round(self.hop_length * speed))
        keyshift_key = str(keyshift) + "_" + str(audio.device)
        if keyshift_key not in self.hann_window:
            self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
                audio.device
            )
        if "privateuseone" in str(audio.device):
            if not hasattr(self, "stft"):
                self.stft = STFT(
                    filter_length=n_fft_new,
                    hop_length=hop_length_new,
                    win_length=win_length_new,
                    window="hann",
                ).to(audio.device)
            magnitude = self.stft.transform(audio)
        else:
            fft = torch.stft(
                audio,
                n_fft=n_fft_new,
                hop_length=hop_length_new,
                win_length=win_length_new,
                window=self.hann_window[keyshift_key],
                center=center,
                return_complex=True,
            )
            magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
        if keyshift != 0:
            size = self.n_fft // 2 + 1
            resize = magnitude.size(1)
            if resize < size:
                magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
            magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
        mel_output = torch.matmul(self.mel_basis, magnitude)
        if self.is_half == True:
            mel_output = mel_output.half()
        log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
        return log_mel_spec


class RMVPE:
    def __init__(self, model_path: str, is_half, device=None, use_jit=False):
        self.resample_kernel = {}
        self.resample_kernel = {}
        self.is_half = is_half
        if device is None:
            device = "cuda:0" if torch.cuda.is_available() else "cpu"
        self.device = device
        self.mel_extractor = MelSpectrogram(
            is_half, 128, 16000, 1024, 160, None, 30, 8000
        ).to(device)
        if "privateuseone" in str(device):
            import onnxruntime as ort

            ort_session = ort.InferenceSession(
                "%s/rmvpe.onnx" % os.environ["rmvpe_root"],
                providers=["DmlExecutionProvider"],
            )
            self.model = ort_session
        else:
            if str(self.device) == "cuda":
                self.device = torch.device("cuda:0")

            def get_jit_model():
                jit_model_path = model_path.rstrip(".pth")
                jit_model_path += ".half.jit" if is_half else ".jit"
                reload = False
                if os.path.exists(jit_model_path):
                    ckpt = jit.load(jit_model_path)
                    model_device = ckpt["device"]
                    if model_device != str(self.device):
                        reload = True
                else:
                    reload = True

                if reload:
                    ckpt = jit.rmvpe_jit_export(
                        model_path=model_path,
                        mode="script",
                        inputs_path=None,
                        save_path=jit_model_path,
                        device=device,
                        is_half=is_half,
                    )
                model = torch.jit.load(BytesIO(ckpt["model"]), map_location=device)
                return model

            def get_default_model():
                model = E2E(4, 1, (2, 2))
                ckpt = torch.load(model_path, map_location="cpu")
                model.load_state_dict(ckpt)
                model.eval()
                if is_half:
                    model = model.half()
                else:
                    model = model.float()
                return model

            if use_jit:
                if is_half and "cpu" in str(self.device):
                    logger.warning(
                        "Use default rmvpe model. \
                                 Jit is not supported on the CPU for half floating point"
                    )
                    self.model = get_default_model()
                else:
                    self.model = get_jit_model()
            else:
                self.model = get_default_model()

            self.model = self.model.to(device)
        cents_mapping = 20 * np.arange(360) + 1997.3794084376191
        self.cents_mapping = np.pad(cents_mapping, (4, 4))  # 368

    def mel2hidden(self, mel):
        with torch.no_grad():
            n_frames = mel.shape[-1]
            n_pad = 32 * ((n_frames - 1) // 32 + 1) - n_frames
            if n_pad > 0:
                mel = F.pad(mel, (0, n_pad), mode="constant")
            if "privateuseone" in str(self.device):
                onnx_input_name = self.model.get_inputs()[0].name
                onnx_outputs_names = self.model.get_outputs()[0].name
                hidden = self.model.run(
                    [onnx_outputs_names],
                    input_feed={onnx_input_name: mel.cpu().numpy()},
                )[0]
            else:
                mel = mel.half() if self.is_half else mel.float()
                hidden = self.model(mel)
            return hidden[:, :n_frames]

    def decode(self, hidden, thred=0.03):
        cents_pred = self.to_local_average_cents(hidden, thred=thred)
        f0 = 10 * (2 ** (cents_pred / 1200))
        f0[f0 == 10] = 0
        # f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
        return f0

    def infer_from_audio(self, audio, thred=0.03):
        # torch.cuda.synchronize()
        t0 = ttime()
        mel = self.mel_extractor(
            torch.from_numpy(audio).float().to(self.device).unsqueeze(0), center=True
        )
        # print(123123123,mel.device.type)
        # torch.cuda.synchronize()
        t1 = ttime()
        hidden = self.mel2hidden(mel)
        # torch.cuda.synchronize()
        t2 = ttime()
        # print(234234,hidden.device.type)
        if "privateuseone" not in str(self.device):
            hidden = hidden.squeeze(0).cpu().numpy()
        else:
            hidden = hidden[0]
        if self.is_half == True:
            hidden = hidden.astype("float32")

        f0 = self.decode(hidden, thred=thred)
        # torch.cuda.synchronize()
        t3 = ttime()
        # print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
        return f0

    def to_local_average_cents(self, salience, thred=0.05):
        # t0 = ttime()
        center = np.argmax(salience, axis=1)  # 帧长#index
        salience = np.pad(salience, ((0, 0), (4, 4)))  # 帧长,368
        # t1 = ttime()
        center += 4
        todo_salience = []
        todo_cents_mapping = []
        starts = center - 4
        ends = center + 5
        for idx in range(salience.shape[0]):
            todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
            todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
        # t2 = ttime()
        todo_salience = np.array(todo_salience)  # 帧长,9
        todo_cents_mapping = np.array(todo_cents_mapping)  # 帧长,9
        product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
        weight_sum = np.sum(todo_salience, 1)  # 帧长
        devided = product_sum / weight_sum  # 帧长
        # t3 = ttime()
        maxx = np.max(salience, axis=1)  # 帧长
        devided[maxx <= thred] = 0
        # t4 = ttime()
        # print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
        return devided


if __name__ == "__main__":
    import librosa
    import soundfile as sf

    audio, sampling_rate = sf.read(r"C:\Users\liujing04\Desktop\Z\冬之花clip1.wav")
    if len(audio.shape) > 1:
        audio = librosa.to_mono(audio.transpose(1, 0))
    audio_bak = audio.copy()
    if sampling_rate != 16000:
        audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
    model_path = r"D:\BaiduNetdiskDownload\RVC-beta-v2-0727AMD_realtime\rmvpe.pt"
    thred = 0.03  # 0.01
    device = "cuda" if torch.cuda.is_available() else "cpu"
    rmvpe = RMVPE(model_path, is_half=False, device=device)
    t0 = ttime()
    f0 = rmvpe.infer_from_audio(audio, thred=thred)
    # f0 = rmvpe.infer_from_audio(audio, thred=thred)
    # f0 = rmvpe.infer_from_audio(audio, thred=thred)
    # f0 = rmvpe.infer_from_audio(audio, thred=thred)
    # f0 = rmvpe.infer_from_audio(audio, thred=thred)
    t1 = ttime()
    logger.info("%s %.2f", f0.shape, t1 - t0)