Spaces:
Sleeping
Sleeping
import os, traceback | |
import numpy as np | |
import torch | |
import torch.utils.data | |
import sys | |
sys.path.append('lib') | |
from mel_processing import spectrogram_torch | |
from utils import load_wav_to_torch, load_filepaths_and_text | |
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset): | |
""" | |
1) loads audio, text pairs | |
2) normalizes text and converts them to sequences of integers | |
3) computes spectrograms from audio files. | |
""" | |
def __init__(self, audiopaths_and_text, hparams): | |
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text) | |
self.max_wav_value = hparams.max_wav_value | |
self.sampling_rate = hparams.sampling_rate | |
self.filter_length = hparams.filter_length | |
self.hop_length = hparams.hop_length | |
self.win_length = hparams.win_length | |
self.sampling_rate = hparams.sampling_rate | |
self.min_text_len = getattr(hparams, "min_text_len", 1) | |
self.max_text_len = getattr(hparams, "max_text_len", 5000) | |
self._filter() | |
def _filter(self): | |
""" | |
Filter text & store spec lengths | |
""" | |
# Store spectrogram lengths for Bucketing | |
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2) | |
# spec_length = wav_length // hop_length | |
audiopaths_and_text_new = [] | |
lengths = [] | |
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text: | |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len: | |
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv]) | |
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length)) | |
self.audiopaths_and_text = audiopaths_and_text_new | |
self.lengths = lengths | |
def get_sid(self, sid): | |
sid = torch.LongTensor([int(sid)]) | |
return sid | |
def get_audio_text_pair(self, audiopath_and_text): | |
# separate filename and text | |
file = audiopath_and_text[0] | |
phone = audiopath_and_text[1] | |
pitch = audiopath_and_text[2] | |
pitchf = audiopath_and_text[3] | |
dv = audiopath_and_text[4] | |
phone, pitch, pitchf = self.get_labels(phone, pitch, pitchf) | |
spec, wav = self.get_audio(file) | |
dv = self.get_sid(dv) | |
len_phone = phone.size()[0] | |
len_spec = spec.size()[-1] | |
# print(123,phone.shape,pitch.shape,spec.shape) | |
if len_phone != len_spec: | |
len_min = min(len_phone, len_spec) | |
# amor | |
len_wav = len_min * self.hop_length | |
spec = spec[:, :len_min] | |
wav = wav[:, :len_wav] | |
phone = phone[:len_min, :] | |
pitch = pitch[:len_min] | |
pitchf = pitchf[:len_min] | |
return (spec, wav, phone, pitch, pitchf, dv) | |
def get_labels(self, phone, pitch, pitchf): | |
phone = np.load(phone) | |
phone = np.repeat(phone, 2, axis=0) | |
pitch = np.load(pitch) | |
pitchf = np.load(pitchf) | |
n_num = min(phone.shape[0], 900) # DistributedBucketSampler | |
# print(234,phone.shape,pitch.shape) | |
phone = phone[:n_num, :] | |
pitch = pitch[:n_num] | |
pitchf = pitchf[:n_num] | |
phone = torch.FloatTensor(phone) | |
pitch = torch.LongTensor(pitch) | |
pitchf = torch.FloatTensor(pitchf) | |
return phone, pitch, pitchf | |
def get_audio(self, filename): | |
audio, sampling_rate = load_wav_to_torch(filename) | |
if sampling_rate != self.sampling_rate: | |
raise ValueError( | |
"{} SR doesn't match target {} SR".format( | |
sampling_rate, self.sampling_rate | |
) | |
) | |
audio_norm = audio | |
# audio_norm = audio / self.max_wav_value | |
# audio_norm = audio / np.abs(audio).max() | |
audio_norm = audio_norm.unsqueeze(0) | |
spec_filename = filename.replace(".wav", ".spec.pt") | |
if os.path.exists(spec_filename): | |
try: | |
spec = torch.load(spec_filename) | |
except: | |
print(spec_filename, traceback.format_exc()) | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.sampling_rate, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
else: | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.sampling_rate, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
return spec, audio_norm | |
def __getitem__(self, index): | |
return self.get_audio_text_pair(self.audiopaths_and_text[index]) | |
def __len__(self): | |
return len(self.audiopaths_and_text) | |
class TextAudioCollateMultiNSFsid: | |
"""Zero-pads model inputs and targets""" | |
def __init__(self, return_ids=False): | |
self.return_ids = return_ids | |
def __call__(self, batch): | |
"""Collate's training batch from normalized text and aduio | |
PARAMS | |
------ | |
batch: [text_normalized, spec_normalized, wav_normalized] | |
""" | |
# Right zero-pad all one-hot text sequences to max input length | |
_, ids_sorted_decreasing = torch.sort( | |
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True | |
) | |
max_spec_len = max([x[0].size(1) for x in batch]) | |
max_wave_len = max([x[1].size(1) for x in batch]) | |
spec_lengths = torch.LongTensor(len(batch)) | |
wave_lengths = torch.LongTensor(len(batch)) | |
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len) | |
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len) | |
spec_padded.zero_() | |
wave_padded.zero_() | |
max_phone_len = max([x[2].size(0) for x in batch]) | |
phone_lengths = torch.LongTensor(len(batch)) | |
phone_padded = torch.FloatTensor( | |
len(batch), max_phone_len, batch[0][2].shape[1] | |
) # (spec, wav, phone, pitch) | |
pitch_padded = torch.LongTensor(len(batch), max_phone_len) | |
pitchf_padded = torch.FloatTensor(len(batch), max_phone_len) | |
phone_padded.zero_() | |
pitch_padded.zero_() | |
pitchf_padded.zero_() | |
# dv = torch.FloatTensor(len(batch), 256)#gin=256 | |
sid = torch.LongTensor(len(batch)) | |
for i in range(len(ids_sorted_decreasing)): | |
row = batch[ids_sorted_decreasing[i]] | |
spec = row[0] | |
spec_padded[i, :, : spec.size(1)] = spec | |
spec_lengths[i] = spec.size(1) | |
wave = row[1] | |
wave_padded[i, :, : wave.size(1)] = wave | |
wave_lengths[i] = wave.size(1) | |
phone = row[2] | |
phone_padded[i, : phone.size(0), :] = phone | |
phone_lengths[i] = phone.size(0) | |
pitch = row[3] | |
pitch_padded[i, : pitch.size(0)] = pitch | |
pitchf = row[4] | |
pitchf_padded[i, : pitchf.size(0)] = pitchf | |
# dv[i] = row[5] | |
sid[i] = row[5] | |
return ( | |
phone_padded, | |
phone_lengths, | |
pitch_padded, | |
pitchf_padded, | |
spec_padded, | |
spec_lengths, | |
wave_padded, | |
wave_lengths, | |
# dv | |
sid, | |
) | |
class TextAudioLoader(torch.utils.data.Dataset): | |
""" | |
1) loads audio, text pairs | |
2) normalizes text and converts them to sequences of integers | |
3) computes spectrograms from audio files. | |
""" | |
def __init__(self, audiopaths_and_text, hparams): | |
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text) | |
self.max_wav_value = hparams.max_wav_value | |
self.sampling_rate = hparams.sampling_rate | |
self.filter_length = hparams.filter_length | |
self.hop_length = hparams.hop_length | |
self.win_length = hparams.win_length | |
self.sampling_rate = hparams.sampling_rate | |
self.min_text_len = getattr(hparams, "min_text_len", 1) | |
self.max_text_len = getattr(hparams, "max_text_len", 5000) | |
self._filter() | |
def _filter(self): | |
""" | |
Filter text & store spec lengths | |
""" | |
# Store spectrogram lengths for Bucketing | |
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2) | |
# spec_length = wav_length // hop_length | |
audiopaths_and_text_new = [] | |
lengths = [] | |
for audiopath, text, dv in self.audiopaths_and_text: | |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len: | |
audiopaths_and_text_new.append([audiopath, text, dv]) | |
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length)) | |
self.audiopaths_and_text = audiopaths_and_text_new | |
self.lengths = lengths | |
def get_sid(self, sid): | |
sid = torch.LongTensor([int(sid)]) | |
return sid | |
def get_audio_text_pair(self, audiopath_and_text): | |
# separate filename and text | |
file = audiopath_and_text[0] | |
phone = audiopath_and_text[1] | |
dv = audiopath_and_text[2] | |
phone = self.get_labels(phone) | |
spec, wav = self.get_audio(file) | |
dv = self.get_sid(dv) | |
len_phone = phone.size()[0] | |
len_spec = spec.size()[-1] | |
if len_phone != len_spec: | |
len_min = min(len_phone, len_spec) | |
len_wav = len_min * self.hop_length | |
spec = spec[:, :len_min] | |
wav = wav[:, :len_wav] | |
phone = phone[:len_min, :] | |
return (spec, wav, phone, dv) | |
def get_labels(self, phone): | |
phone = np.load(phone) | |
phone = np.repeat(phone, 2, axis=0) | |
n_num = min(phone.shape[0], 900) # DistributedBucketSampler | |
phone = phone[:n_num, :] | |
phone = torch.FloatTensor(phone) | |
return phone | |
def get_audio(self, filename): | |
audio, sampling_rate = load_wav_to_torch(filename) | |
if sampling_rate != self.sampling_rate: | |
raise ValueError( | |
"{} SR doesn't match target {} SR".format( | |
sampling_rate, self.sampling_rate | |
) | |
) | |
audio_norm = audio | |
# audio_norm = audio / self.max_wav_value | |
# audio_norm = audio / np.abs(audio).max() | |
audio_norm = audio_norm.unsqueeze(0) | |
spec_filename = filename.replace(".wav", ".spec.pt") | |
if os.path.exists(spec_filename): | |
try: | |
spec = torch.load(spec_filename) | |
except: | |
print(spec_filename, traceback.format_exc()) | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.sampling_rate, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
else: | |
spec = spectrogram_torch( | |
audio_norm, | |
self.filter_length, | |
self.sampling_rate, | |
self.hop_length, | |
self.win_length, | |
center=False, | |
) | |
spec = torch.squeeze(spec, 0) | |
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False) | |
return spec, audio_norm | |
def __getitem__(self, index): | |
return self.get_audio_text_pair(self.audiopaths_and_text[index]) | |
def __len__(self): | |
return len(self.audiopaths_and_text) | |
class TextAudioCollate: | |
"""Zero-pads model inputs and targets""" | |
def __init__(self, return_ids=False): | |
self.return_ids = return_ids | |
def __call__(self, batch): | |
"""Collate's training batch from normalized text and aduio | |
PARAMS | |
------ | |
batch: [text_normalized, spec_normalized, wav_normalized] | |
""" | |
# Right zero-pad all one-hot text sequences to max input length | |
_, ids_sorted_decreasing = torch.sort( | |
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True | |
) | |
max_spec_len = max([x[0].size(1) for x in batch]) | |
max_wave_len = max([x[1].size(1) for x in batch]) | |
spec_lengths = torch.LongTensor(len(batch)) | |
wave_lengths = torch.LongTensor(len(batch)) | |
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len) | |
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len) | |
spec_padded.zero_() | |
wave_padded.zero_() | |
max_phone_len = max([x[2].size(0) for x in batch]) | |
phone_lengths = torch.LongTensor(len(batch)) | |
phone_padded = torch.FloatTensor( | |
len(batch), max_phone_len, batch[0][2].shape[1] | |
) | |
phone_padded.zero_() | |
sid = torch.LongTensor(len(batch)) | |
for i in range(len(ids_sorted_decreasing)): | |
row = batch[ids_sorted_decreasing[i]] | |
spec = row[0] | |
spec_padded[i, :, : spec.size(1)] = spec | |
spec_lengths[i] = spec.size(1) | |
wave = row[1] | |
wave_padded[i, :, : wave.size(1)] = wave | |
wave_lengths[i] = wave.size(1) | |
phone = row[2] | |
phone_padded[i, : phone.size(0), :] = phone | |
phone_lengths[i] = phone.size(0) | |
sid[i] = row[3] | |
return ( | |
phone_padded, | |
phone_lengths, | |
spec_padded, | |
spec_lengths, | |
wave_padded, | |
wave_lengths, | |
sid, | |
) | |
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler): | |
""" | |
Maintain similar input lengths in a batch. | |
Length groups are specified by boundaries. | |
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}. | |
It removes samples which are not included in the boundaries. | |
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded. | |
""" | |
def __init__( | |
self, | |
dataset, | |
batch_size, | |
boundaries, | |
num_replicas=None, | |
rank=None, | |
shuffle=True, | |
): | |
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) | |
self.lengths = dataset.lengths | |
self.batch_size = batch_size | |
self.boundaries = boundaries | |
self.buckets, self.num_samples_per_bucket = self._create_buckets() | |
self.total_size = sum(self.num_samples_per_bucket) | |
self.num_samples = self.total_size // self.num_replicas | |
def _create_buckets(self): | |
buckets = [[] for _ in range(len(self.boundaries) - 1)] | |
for i in range(len(self.lengths)): | |
length = self.lengths[i] | |
idx_bucket = self._bisect(length) | |
if idx_bucket != -1: | |
buckets[idx_bucket].append(i) | |
for i in range(len(buckets) - 1, -1, -1): # | |
if len(buckets[i]) == 0: | |
buckets.pop(i) | |
self.boundaries.pop(i + 1) | |
num_samples_per_bucket = [] | |
for i in range(len(buckets)): | |
len_bucket = len(buckets[i]) | |
total_batch_size = self.num_replicas * self.batch_size | |
rem = ( | |
total_batch_size - (len_bucket % total_batch_size) | |
) % total_batch_size | |
num_samples_per_bucket.append(len_bucket + rem) | |
return buckets, num_samples_per_bucket | |
def __iter__(self): | |
# deterministically shuffle based on epoch | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
indices = [] | |
if self.shuffle: | |
for bucket in self.buckets: | |
indices.append(torch.randperm(len(bucket), generator=g).tolist()) | |
else: | |
for bucket in self.buckets: | |
indices.append(list(range(len(bucket)))) | |
batches = [] | |
for i in range(len(self.buckets)): | |
bucket = self.buckets[i] | |
len_bucket = len(bucket) | |
ids_bucket = indices[i] | |
num_samples_bucket = self.num_samples_per_bucket[i] | |
# add extra samples to make it evenly divisible | |
rem = num_samples_bucket - len_bucket | |
ids_bucket = ( | |
ids_bucket | |
+ ids_bucket * (rem // len_bucket) | |
+ ids_bucket[: (rem % len_bucket)] | |
) | |
# subsample | |
ids_bucket = ids_bucket[self.rank :: self.num_replicas] | |
# batching | |
for j in range(len(ids_bucket) // self.batch_size): | |
batch = [ | |
bucket[idx] | |
for idx in ids_bucket[ | |
j * self.batch_size : (j + 1) * self.batch_size | |
] | |
] | |
batches.append(batch) | |
if self.shuffle: | |
batch_ids = torch.randperm(len(batches), generator=g).tolist() | |
batches = [batches[i] for i in batch_ids] | |
self.batches = batches | |
assert len(self.batches) * self.batch_size == self.num_samples | |
return iter(self.batches) | |
def _bisect(self, x, lo=0, hi=None): | |
if hi is None: | |
hi = len(self.boundaries) - 1 | |
if hi > lo: | |
mid = (hi + lo) // 2 | |
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: | |
return mid | |
elif x <= self.boundaries[mid]: | |
return self._bisect(x, lo, mid) | |
else: | |
return self._bisect(x, mid + 1, hi) | |
else: | |
return -1 | |
def __len__(self): | |
return self.num_samples // self.batch_size | |