smjain's picture
Upload 6 files
1b83a0a verified
raw
history blame
4.1 kB
import os
import sys
import traceback
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
os.environ["PYTORCH_MPS_HIGH_WATERMARK_RATIO"] = "0.0"
device = sys.argv[1]
n_part = int(sys.argv[2])
i_part = int(sys.argv[3])
if len(sys.argv) == 6:
exp_dir = sys.argv[4]
version = sys.argv[5]
else:
i_gpu = sys.argv[4]
exp_dir = sys.argv[5]
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu)
version = sys.argv[6]
import fairseq
import numpy as np
import soundfile as sf
import torch
import torch.nn.functional as F
if "privateuseone" not in device:
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
import torch_directml
device = torch_directml.device(torch_directml.default_device())
def forward_dml(ctx, x, scale):
ctx.scale = scale
res = x.clone().detach()
return res
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
def printt(strr):
print(strr)
f.write("%s\n" % strr)
f.flush()
printt(sys.argv)
model_path = "assets/hubert/hubert_base.pt"
printt(exp_dir)
wavPath = "%s/1_16k_wavs" % exp_dir
outPath = (
"%s/3_feature256" % exp_dir if version == "v1" else "%s/3_feature768" % exp_dir
)
os.makedirs(outPath, exist_ok=True)
# wave must be 16k, hop_size=320
def readwave(wav_path, normalize=False):
wav, sr = sf.read(wav_path)
assert sr == 16000
feats = torch.from_numpy(wav).float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
if normalize:
with torch.no_grad():
feats = F.layer_norm(feats, feats.shape)
feats = feats.view(1, -1)
return feats
# HuBERT model
printt("load model(s) from {}".format(model_path))
# if hubert model is exist
if os.access(model_path, os.F_OK) == False:
printt(
"Error: Extracting is shut down because %s does not exist, you may download it from https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main"
% model_path
)
exit(0)
models, saved_cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[model_path],
suffix="",
)
model = models[0]
model = model.to(device)
printt("move model to %s" % device)
if device not in ["mps", "cpu"]:
model = model.half()
model.eval()
todo = sorted(list(os.listdir(wavPath)))[i_part::n_part]
n = max(1, len(todo) // 10) # 最多打印十条
if len(todo) == 0:
printt("no-feature-todo")
else:
printt("all-feature-%s" % len(todo))
for idx, file in enumerate(todo):
try:
if file.endswith(".wav"):
wav_path = "%s/%s" % (wavPath, file)
out_path = "%s/%s" % (outPath, file.replace("wav", "npy"))
if os.path.exists(out_path):
continue
feats = readwave(wav_path, normalize=saved_cfg.task.normalize)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.half().to(device)
if device not in ["mps", "cpu"]
else feats.to(device),
"padding_mask": padding_mask.to(device),
"output_layer": 9 if version == "v1" else 12, # layer 9
}
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = (
model.final_proj(logits[0]) if version == "v1" else logits[0]
)
feats = feats.squeeze(0).float().cpu().numpy()
if np.isnan(feats).sum() == 0:
np.save(out_path, feats, allow_pickle=False)
else:
printt("%s-contains nan" % file)
if idx % n == 0:
printt("now-%s,all-%s,%s,%s" % (len(todo), idx, file, feats.shape))
except:
printt(traceback.format_exc())
printt("all-feature-done")