Spaces:
Sleeping
Sleeping
Upload extract_feature_print.py
Browse files- extract_feature_print.py +137 -0
extract_feature_print.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import traceback
|
4 |
+
|
5 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
6 |
+
os.environ["PYTORCH_MPS_HIGH_WATERMARK_RATIO"] = "0.0"
|
7 |
+
|
8 |
+
device = sys.argv[1]
|
9 |
+
n_part = int(sys.argv[2])
|
10 |
+
i_part = int(sys.argv[3])
|
11 |
+
if len(sys.argv) == 6:
|
12 |
+
exp_dir = sys.argv[4]
|
13 |
+
version = sys.argv[5]
|
14 |
+
else:
|
15 |
+
i_gpu = sys.argv[4]
|
16 |
+
exp_dir = sys.argv[5]
|
17 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu)
|
18 |
+
version = sys.argv[6]
|
19 |
+
import fairseq
|
20 |
+
import numpy as np
|
21 |
+
import soundfile as sf
|
22 |
+
import torch
|
23 |
+
import torch.nn.functional as F
|
24 |
+
|
25 |
+
if "privateuseone" not in device:
|
26 |
+
device = "cpu"
|
27 |
+
if torch.cuda.is_available():
|
28 |
+
device = "cuda"
|
29 |
+
elif torch.backends.mps.is_available():
|
30 |
+
device = "mps"
|
31 |
+
else:
|
32 |
+
import torch_directml
|
33 |
+
|
34 |
+
device = torch_directml.device(torch_directml.default_device())
|
35 |
+
|
36 |
+
def forward_dml(ctx, x, scale):
|
37 |
+
ctx.scale = scale
|
38 |
+
res = x.clone().detach()
|
39 |
+
return res
|
40 |
+
|
41 |
+
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
42 |
+
|
43 |
+
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")
|
44 |
+
|
45 |
+
|
46 |
+
def printt(strr):
|
47 |
+
print(strr)
|
48 |
+
f.write("%s\n" % strr)
|
49 |
+
f.flush()
|
50 |
+
|
51 |
+
|
52 |
+
printt(sys.argv)
|
53 |
+
model_path = "assets/hubert/hubert_base.pt"
|
54 |
+
|
55 |
+
printt(exp_dir)
|
56 |
+
wavPath = "%s/1_16k_wavs" % exp_dir
|
57 |
+
outPath = (
|
58 |
+
"%s/3_feature256" % exp_dir if version == "v1" else "%s/3_feature768" % exp_dir
|
59 |
+
)
|
60 |
+
os.makedirs(outPath, exist_ok=True)
|
61 |
+
|
62 |
+
|
63 |
+
# wave must be 16k, hop_size=320
|
64 |
+
def readwave(wav_path, normalize=False):
|
65 |
+
wav, sr = sf.read(wav_path)
|
66 |
+
assert sr == 16000
|
67 |
+
feats = torch.from_numpy(wav).float()
|
68 |
+
if feats.dim() == 2: # double channels
|
69 |
+
feats = feats.mean(-1)
|
70 |
+
assert feats.dim() == 1, feats.dim()
|
71 |
+
if normalize:
|
72 |
+
with torch.no_grad():
|
73 |
+
feats = F.layer_norm(feats, feats.shape)
|
74 |
+
feats = feats.view(1, -1)
|
75 |
+
return feats
|
76 |
+
|
77 |
+
|
78 |
+
# HuBERT model
|
79 |
+
printt("load model(s) from {}".format(model_path))
|
80 |
+
# if hubert model is exist
|
81 |
+
if os.access(model_path, os.F_OK) == False:
|
82 |
+
printt(
|
83 |
+
"Error: Extracting is shut down because %s does not exist, you may download it from https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main"
|
84 |
+
% model_path
|
85 |
+
)
|
86 |
+
exit(0)
|
87 |
+
models, saved_cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
88 |
+
[model_path],
|
89 |
+
suffix="",
|
90 |
+
)
|
91 |
+
model = models[0]
|
92 |
+
model = model.to(device)
|
93 |
+
printt("move model to %s" % device)
|
94 |
+
if device not in ["mps", "cpu"]:
|
95 |
+
model = model.half()
|
96 |
+
model.eval()
|
97 |
+
|
98 |
+
todo = sorted(list(os.listdir(wavPath)))[i_part::n_part]
|
99 |
+
n = max(1, len(todo) // 10) # 最多打印十条
|
100 |
+
if len(todo) == 0:
|
101 |
+
printt("no-feature-todo")
|
102 |
+
else:
|
103 |
+
printt("all-feature-%s" % len(todo))
|
104 |
+
for idx, file in enumerate(todo):
|
105 |
+
try:
|
106 |
+
if file.endswith(".wav"):
|
107 |
+
wav_path = "%s/%s" % (wavPath, file)
|
108 |
+
out_path = "%s/%s" % (outPath, file.replace("wav", "npy"))
|
109 |
+
|
110 |
+
if os.path.exists(out_path):
|
111 |
+
continue
|
112 |
+
|
113 |
+
feats = readwave(wav_path, normalize=saved_cfg.task.normalize)
|
114 |
+
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
115 |
+
inputs = {
|
116 |
+
"source": feats.half().to(device)
|
117 |
+
if device not in ["mps", "cpu"]
|
118 |
+
else feats.to(device),
|
119 |
+
"padding_mask": padding_mask.to(device),
|
120 |
+
"output_layer": 9 if version == "v1" else 12, # layer 9
|
121 |
+
}
|
122 |
+
with torch.no_grad():
|
123 |
+
logits = model.extract_features(**inputs)
|
124 |
+
feats = (
|
125 |
+
model.final_proj(logits[0]) if version == "v1" else logits[0]
|
126 |
+
)
|
127 |
+
|
128 |
+
feats = feats.squeeze(0).float().cpu().numpy()
|
129 |
+
if np.isnan(feats).sum() == 0:
|
130 |
+
np.save(out_path, feats, allow_pickle=False)
|
131 |
+
else:
|
132 |
+
printt("%s-contains nan" % file)
|
133 |
+
if idx % n == 0:
|
134 |
+
printt("now-%s,all-%s,%s,%s" % (len(todo), idx, file, feats.shape))
|
135 |
+
except:
|
136 |
+
printt(traceback.format_exc())
|
137 |
+
printt("all-feature-done")
|