Spaces:
Running
Running
Upload 2 files
Browse files- Dockerfile +42 -0
- download.py +42 -0
Dockerfile
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the specified RunPod base image with CUDA support and Python 3.8
|
2 |
+
FROM python:3.8-slim
|
3 |
+
|
4 |
+
# Install system dependencies
|
5 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
6 |
+
build-essential \
|
7 |
+
python3-dev \
|
8 |
+
ffmpeg \
|
9 |
+
aria2 \
|
10 |
+
git \
|
11 |
+
git-lfs \
|
12 |
+
&& rm -rf /var/lib/apt/lists/*
|
13 |
+
|
14 |
+
# Clone the repository into the container
|
15 |
+
ARG CACHEBUST=1
|
16 |
+
RUN git clone https://huggingface.co/spaces/smjain/Advanced-RVC-Inference /app
|
17 |
+
|
18 |
+
# Set the working directory to the cloned repository to run commands inside it
|
19 |
+
WORKDIR /app
|
20 |
+
|
21 |
+
# Install Git Large File Storage (LFS), then pull LFS files
|
22 |
+
RUN git lfs install && git lfs pull
|
23 |
+
|
24 |
+
# Create a virtual environment named 'infer' and activate it
|
25 |
+
#RUN python3 -m venv /venv/infer
|
26 |
+
#ENV PATH="/venv/infer/bin:$PATH"
|
27 |
+
|
28 |
+
# Upgrade pip and install Python dependencies from the project's requirements.txt
|
29 |
+
# Also, install Flask and av as specified
|
30 |
+
RUN pip install --upgrade pip && \
|
31 |
+
pip install --upgrade -r requirements.txt --no-cache-dir && \
|
32 |
+
pip install flask av boto3 flask_dance
|
33 |
+
|
34 |
+
# Move PyTorch model weights into the weights directory if necessary
|
35 |
+
RUN mv *.pth weights/ || echo "No weights to move"
|
36 |
+
|
37 |
+
# Setting Flask application
|
38 |
+
# Expose the port Flask is running on
|
39 |
+
EXPOSE 5000
|
40 |
+
|
41 |
+
# Command to directly run the Flask application script
|
42 |
+
CMD ["python", "myinfer_latest.py"]
|
download.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, send_file, request, jsonify
|
2 |
+
import boto3
|
3 |
+
import os
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
# AWS / DigitalOcean Spaces credentials
|
8 |
+
ACCESS_ID = os.getenv('ACCESS_ID', 'DO0026WEQUG4WF6WQNJ9')
|
9 |
+
SECRET_KEY = os.getenv('SECRET_KEY', 'UG7kQicGgWmkfVmESWK889RxZG49UqV7vRfYUJDFFUo')
|
10 |
+
|
11 |
+
@app.route('/download/<filename>', methods=['GET'])
|
12 |
+
def download_file(filename):
|
13 |
+
# Configure the client with your credentials
|
14 |
+
session = boto3.session.Session()
|
15 |
+
client = session.client('s3',
|
16 |
+
region_name='nyc3',
|
17 |
+
endpoint_url='https://nyc3.digitaloceanspaces.com',
|
18 |
+
aws_access_key_id=ACCESS_ID,
|
19 |
+
aws_secret_access_key=SECRET_KEY)
|
20 |
+
|
21 |
+
# Define the bucket and object key
|
22 |
+
bucket_name = 'sing' # Your bucket name
|
23 |
+
object_key = f'{filename}' # Construct the object key
|
24 |
+
|
25 |
+
# Define the local path to save the file
|
26 |
+
local_file_path = os.path.join('weights', filename)
|
27 |
+
|
28 |
+
# Download the file from the bucket
|
29 |
+
try:
|
30 |
+
client.download_file(bucket_name, object_key, local_file_path)
|
31 |
+
except client.exceptions.NoSuchKey:
|
32 |
+
return jsonify({'error': 'File not found in the bucket'}), 404
|
33 |
+
except Exception as e:
|
34 |
+
return jsonify({'error': str(e)}), 500
|
35 |
+
|
36 |
+
# Optional: Send the file directly to the client
|
37 |
+
# return send_file(local_file_path, as_attachment=True)
|
38 |
+
|
39 |
+
return jsonify({'success': True, 'message': 'File downloaded successfully', 'file_path': local_file_path})
|
40 |
+
|
41 |
+
if __name__ == '__main__':
|
42 |
+
app.run(debug=True)
|