Spaces:
Running
Running
Upload 5 files
Browse files- lib/data_utils.py +7 -12
- lib/losses.py +1 -0
- lib/mel_processing.py +4 -6
- lib/process_ckpt.py +113 -126
- lib/utils.py +33 -40
lib/data_utils.py
CHANGED
@@ -1,15 +1,10 @@
|
|
1 |
-
import os
|
2 |
-
import traceback
|
3 |
-
import logging
|
4 |
-
|
5 |
-
logger = logging.getLogger(__name__)
|
6 |
-
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
import torch.utils.data
|
10 |
|
11 |
-
from
|
12 |
-
from
|
13 |
|
14 |
|
15 |
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
@@ -43,7 +38,7 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
|
43 |
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text:
|
44 |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
45 |
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv])
|
46 |
-
lengths.append(os.path.getsize(audiopath) // (
|
47 |
self.audiopaths_and_text = audiopaths_and_text_new
|
48 |
self.lengths = lengths
|
49 |
|
@@ -113,7 +108,7 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
|
113 |
try:
|
114 |
spec = torch.load(spec_filename)
|
115 |
except:
|
116 |
-
|
117 |
spec = spectrogram_torch(
|
118 |
audio_norm,
|
119 |
self.filter_length,
|
@@ -251,7 +246,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
|
251 |
for audiopath, text, dv in self.audiopaths_and_text:
|
252 |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
253 |
audiopaths_and_text_new.append([audiopath, text, dv])
|
254 |
-
lengths.append(os.path.getsize(audiopath) // (
|
255 |
self.audiopaths_and_text = audiopaths_and_text_new
|
256 |
self.lengths = lengths
|
257 |
|
@@ -305,7 +300,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
|
|
305 |
try:
|
306 |
spec = torch.load(spec_filename)
|
307 |
except:
|
308 |
-
|
309 |
spec = spectrogram_torch(
|
310 |
audio_norm,
|
311 |
self.filter_length,
|
|
|
1 |
+
import os, traceback
|
|
|
|
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
import torch.utils.data
|
5 |
|
6 |
+
from mel_processing import spectrogram_torch
|
7 |
+
from utils import load_wav_to_torch, load_filepaths_and_text
|
8 |
|
9 |
|
10 |
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
|
|
38 |
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text:
|
39 |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
40 |
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv])
|
41 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
42 |
self.audiopaths_and_text = audiopaths_and_text_new
|
43 |
self.lengths = lengths
|
44 |
|
|
|
108 |
try:
|
109 |
spec = torch.load(spec_filename)
|
110 |
except:
|
111 |
+
print(spec_filename, traceback.format_exc())
|
112 |
spec = spectrogram_torch(
|
113 |
audio_norm,
|
114 |
self.filter_length,
|
|
|
246 |
for audiopath, text, dv in self.audiopaths_and_text:
|
247 |
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
248 |
audiopaths_and_text_new.append([audiopath, text, dv])
|
249 |
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
250 |
self.audiopaths_and_text = audiopaths_and_text_new
|
251 |
self.lengths = lengths
|
252 |
|
|
|
300 |
try:
|
301 |
spec = torch.load(spec_filename)
|
302 |
except:
|
303 |
+
print(spec_filename, traceback.format_exc())
|
304 |
spec = spectrogram_torch(
|
305 |
audio_norm,
|
306 |
self.filter_length,
|
lib/losses.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import torch
|
|
|
2 |
|
3 |
|
4 |
def feature_loss(fmap_r, fmap_g):
|
|
|
1 |
import torch
|
2 |
+
from torch.nn import functional as F
|
3 |
|
4 |
|
5 |
def feature_loss(fmap_r, fmap_g):
|
lib/mel_processing.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
import torch
|
2 |
import torch.utils.data
|
3 |
from librosa.filters import mel as librosa_mel_fn
|
4 |
-
import logging
|
5 |
|
6 |
-
logger = logging.getLogger(__name__)
|
7 |
|
8 |
MAX_WAV_VALUE = 32768.0
|
9 |
|
@@ -53,10 +51,10 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
|
|
53 |
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
|
54 |
"""
|
55 |
# Validation
|
56 |
-
if torch.min(y) < -1.
|
57 |
-
|
58 |
-
if torch.max(y) > 1.
|
59 |
-
|
60 |
|
61 |
# Window - Cache if needed
|
62 |
global hann_window
|
|
|
1 |
import torch
|
2 |
import torch.utils.data
|
3 |
from librosa.filters import mel as librosa_mel_fn
|
|
|
4 |
|
|
|
5 |
|
6 |
MAX_WAV_VALUE = 32768.0
|
7 |
|
|
|
51 |
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
|
52 |
"""
|
53 |
# Validation
|
54 |
+
if torch.min(y) < -1.0:
|
55 |
+
print("min value is ", torch.min(y))
|
56 |
+
if torch.max(y) > 1.0:
|
57 |
+
print("max value is ", torch.max(y))
|
58 |
|
59 |
# Window - Cache if needed
|
60 |
global hann_window
|
lib/process_ckpt.py
CHANGED
@@ -1,16 +1,8 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import traceback
|
4 |
from collections import OrderedDict
|
5 |
|
6 |
-
import torch
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
i18n = I18nAuto()
|
11 |
-
|
12 |
-
|
13 |
-
def savee(ckpt, sr, if_f0, name, epoch, version, hps):
|
14 |
try:
|
15 |
opt = OrderedDict()
|
16 |
opt["weight"] = {}
|
@@ -18,31 +10,73 @@ def savee(ckpt, sr, if_f0, name, epoch, version, hps):
|
|
18 |
if "enc_q" in key:
|
19 |
continue
|
20 |
opt["weight"][key] = ckpt[key].half()
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
opt["info"] = "%sepoch" % epoch
|
42 |
opt["sr"] = sr
|
43 |
opt["f0"] = if_f0
|
44 |
-
opt
|
45 |
-
torch.save(opt, "assets/weights/%s.pth" % name)
|
46 |
return "Success."
|
47 |
except:
|
48 |
return traceback.format_exc()
|
@@ -51,17 +85,16 @@ def savee(ckpt, sr, if_f0, name, epoch, version, hps):
|
|
51 |
def show_info(path):
|
52 |
try:
|
53 |
a = torch.load(path, map_location="cpu")
|
54 |
-
return "模型信息:%s\n采样率:%s\n模型是否输入音高引导:%s
|
55 |
a.get("info", "None"),
|
56 |
a.get("sr", "None"),
|
57 |
a.get("f0", "None"),
|
58 |
-
a.get("version", "None"),
|
59 |
)
|
60 |
except:
|
61 |
return traceback.format_exc()
|
62 |
|
63 |
|
64 |
-
def extract_small_model(path, name, sr, if_f0, info
|
65 |
try:
|
66 |
ckpt = torch.load(path, map_location="cpu")
|
67 |
if "model" in ckpt:
|
@@ -94,98 +127,53 @@ def extract_small_model(path, name, sr, if_f0, info, version):
|
|
94 |
40000,
|
95 |
]
|
96 |
elif sr == "48k":
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
]
|
118 |
-
else:
|
119 |
-
opt["config"] = [
|
120 |
-
1025,
|
121 |
-
32,
|
122 |
-
192,
|
123 |
-
192,
|
124 |
-
768,
|
125 |
-
2,
|
126 |
-
6,
|
127 |
-
3,
|
128 |
-
0,
|
129 |
-
"1",
|
130 |
-
[3, 7, 11],
|
131 |
-
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
132 |
-
[12, 10, 2, 2],
|
133 |
-
512,
|
134 |
-
[24, 20, 4, 4],
|
135 |
-
109,
|
136 |
-
256,
|
137 |
-
48000,
|
138 |
-
]
|
139 |
elif sr == "32k":
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
]
|
161 |
-
else:
|
162 |
-
opt["config"] = [
|
163 |
-
513,
|
164 |
-
32,
|
165 |
-
192,
|
166 |
-
192,
|
167 |
-
768,
|
168 |
-
2,
|
169 |
-
6,
|
170 |
-
3,
|
171 |
-
0,
|
172 |
-
"1",
|
173 |
-
[3, 7, 11],
|
174 |
-
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
175 |
-
[10, 8, 2, 2],
|
176 |
-
512,
|
177 |
-
[20, 16, 4, 4],
|
178 |
-
109,
|
179 |
-
256,
|
180 |
-
32000,
|
181 |
-
]
|
182 |
if info == "":
|
183 |
info = "Extracted model."
|
184 |
opt["info"] = info
|
185 |
-
opt["version"] = version
|
186 |
opt["sr"] = sr
|
187 |
opt["f0"] = int(if_f0)
|
188 |
-
torch.save(opt, "
|
189 |
return "Success."
|
190 |
except:
|
191 |
return traceback.format_exc()
|
@@ -197,13 +185,13 @@ def change_info(path, info, name):
|
|
197 |
ckpt["info"] = info
|
198 |
if name == "":
|
199 |
name = os.path.basename(path)
|
200 |
-
torch.save(ckpt, "
|
201 |
return "Success."
|
202 |
except:
|
203 |
return traceback.format_exc()
|
204 |
|
205 |
|
206 |
-
def merge(path1, path2, alpha1, sr, f0, info, name
|
207 |
try:
|
208 |
|
209 |
def extract(ckpt):
|
@@ -252,10 +240,9 @@ def merge(path1, path2, alpha1, sr, f0, info, name, version):
|
|
252 |
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000]
|
253 |
"""
|
254 |
opt["sr"] = sr
|
255 |
-
opt["f0"] = 1 if f0 ==
|
256 |
-
opt["version"] = version
|
257 |
opt["info"] = info
|
258 |
-
torch.save(opt, "
|
259 |
return "Success."
|
260 |
except:
|
261 |
return traceback.format_exc()
|
|
|
1 |
+
import torch, traceback, os, pdb
|
|
|
|
|
2 |
from collections import OrderedDict
|
3 |
|
|
|
4 |
|
5 |
+
def savee(ckpt, sr, if_f0, name, epoch):
|
|
|
|
|
|
|
|
|
|
|
6 |
try:
|
7 |
opt = OrderedDict()
|
8 |
opt["weight"] = {}
|
|
|
10 |
if "enc_q" in key:
|
11 |
continue
|
12 |
opt["weight"][key] = ckpt[key].half()
|
13 |
+
if sr == "40k":
|
14 |
+
opt["config"] = [
|
15 |
+
1025,
|
16 |
+
32,
|
17 |
+
192,
|
18 |
+
192,
|
19 |
+
768,
|
20 |
+
2,
|
21 |
+
6,
|
22 |
+
3,
|
23 |
+
0,
|
24 |
+
"1",
|
25 |
+
[3, 7, 11],
|
26 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
27 |
+
[10, 10, 2, 2],
|
28 |
+
512,
|
29 |
+
[16, 16, 4, 4],
|
30 |
+
109,
|
31 |
+
256,
|
32 |
+
40000,
|
33 |
+
]
|
34 |
+
elif sr == "48k":
|
35 |
+
opt["config"] = [
|
36 |
+
1025,
|
37 |
+
32,
|
38 |
+
192,
|
39 |
+
192,
|
40 |
+
768,
|
41 |
+
2,
|
42 |
+
6,
|
43 |
+
3,
|
44 |
+
0,
|
45 |
+
"1",
|
46 |
+
[3, 7, 11],
|
47 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
48 |
+
[10, 6, 2, 2, 2],
|
49 |
+
512,
|
50 |
+
[16, 16, 4, 4, 4],
|
51 |
+
109,
|
52 |
+
256,
|
53 |
+
48000,
|
54 |
+
]
|
55 |
+
elif sr == "32k":
|
56 |
+
opt["config"] = [
|
57 |
+
513,
|
58 |
+
32,
|
59 |
+
192,
|
60 |
+
192,
|
61 |
+
768,
|
62 |
+
2,
|
63 |
+
6,
|
64 |
+
3,
|
65 |
+
0,
|
66 |
+
"1",
|
67 |
+
[3, 7, 11],
|
68 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
69 |
+
[10, 4, 2, 2, 2],
|
70 |
+
512,
|
71 |
+
[16, 16, 4, 4, 4],
|
72 |
+
109,
|
73 |
+
256,
|
74 |
+
32000,
|
75 |
+
]
|
76 |
opt["info"] = "%sepoch" % epoch
|
77 |
opt["sr"] = sr
|
78 |
opt["f0"] = if_f0
|
79 |
+
torch.save(opt, "weights/%s.pth" % name)
|
|
|
80 |
return "Success."
|
81 |
except:
|
82 |
return traceback.format_exc()
|
|
|
85 |
def show_info(path):
|
86 |
try:
|
87 |
a = torch.load(path, map_location="cpu")
|
88 |
+
return "模型信息:%s\n采样率:%s\n模型是否输入音高引导:%s" % (
|
89 |
a.get("info", "None"),
|
90 |
a.get("sr", "None"),
|
91 |
a.get("f0", "None"),
|
|
|
92 |
)
|
93 |
except:
|
94 |
return traceback.format_exc()
|
95 |
|
96 |
|
97 |
+
def extract_small_model(path, name, sr, if_f0, info):
|
98 |
try:
|
99 |
ckpt = torch.load(path, map_location="cpu")
|
100 |
if "model" in ckpt:
|
|
|
127 |
40000,
|
128 |
]
|
129 |
elif sr == "48k":
|
130 |
+
opt["config"] = [
|
131 |
+
1025,
|
132 |
+
32,
|
133 |
+
192,
|
134 |
+
192,
|
135 |
+
768,
|
136 |
+
2,
|
137 |
+
6,
|
138 |
+
3,
|
139 |
+
0,
|
140 |
+
"1",
|
141 |
+
[3, 7, 11],
|
142 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
143 |
+
[10, 6, 2, 2, 2],
|
144 |
+
512,
|
145 |
+
[16, 16, 4, 4, 4],
|
146 |
+
109,
|
147 |
+
256,
|
148 |
+
48000,
|
149 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
elif sr == "32k":
|
151 |
+
opt["config"] = [
|
152 |
+
513,
|
153 |
+
32,
|
154 |
+
192,
|
155 |
+
192,
|
156 |
+
768,
|
157 |
+
2,
|
158 |
+
6,
|
159 |
+
3,
|
160 |
+
0,
|
161 |
+
"1",
|
162 |
+
[3, 7, 11],
|
163 |
+
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
164 |
+
[10, 4, 2, 2, 2],
|
165 |
+
512,
|
166 |
+
[16, 16, 4, 4, 4],
|
167 |
+
109,
|
168 |
+
256,
|
169 |
+
32000,
|
170 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
if info == "":
|
172 |
info = "Extracted model."
|
173 |
opt["info"] = info
|
|
|
174 |
opt["sr"] = sr
|
175 |
opt["f0"] = int(if_f0)
|
176 |
+
torch.save(opt, "weights/%s.pth" % name)
|
177 |
return "Success."
|
178 |
except:
|
179 |
return traceback.format_exc()
|
|
|
185 |
ckpt["info"] = info
|
186 |
if name == "":
|
187 |
name = os.path.basename(path)
|
188 |
+
torch.save(ckpt, "weights/%s" % name)
|
189 |
return "Success."
|
190 |
except:
|
191 |
return traceback.format_exc()
|
192 |
|
193 |
|
194 |
+
def merge(path1, path2, alpha1, sr, f0, info, name):
|
195 |
try:
|
196 |
|
197 |
def extract(ckpt):
|
|
|
240 |
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000]
|
241 |
"""
|
242 |
opt["sr"] = sr
|
243 |
+
opt["f0"] = 1 if f0 == "是" else 0
|
|
|
244 |
opt["info"] = info
|
245 |
+
torch.save(opt, "weights/%s.pth" % name)
|
246 |
return "Success."
|
247 |
except:
|
248 |
return traceback.format_exc()
|
lib/utils.py
CHANGED
@@ -1,15 +1,13 @@
|
|
1 |
-
import
|
2 |
import glob
|
3 |
-
import
|
|
|
4 |
import logging
|
5 |
-
import
|
6 |
import subprocess
|
7 |
-
import sys
|
8 |
-
import shutil
|
9 |
-
|
10 |
import numpy as np
|
11 |
-
import torch
|
12 |
from scipy.io.wavfile import read
|
|
|
13 |
|
14 |
MATPLOTLIB_FLAG = False
|
15 |
|
@@ -33,25 +31,22 @@ def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
|
|
33 |
try:
|
34 |
new_state_dict[k] = saved_state_dict[k]
|
35 |
if saved_state_dict[k].shape != state_dict[k].shape:
|
36 |
-
|
37 |
-
"shape-%s-mismatch
|
38 |
-
k,
|
39 |
-
state_dict[k].shape,
|
40 |
-
saved_state_dict[k].shape,
|
41 |
) #
|
42 |
raise KeyError
|
43 |
except:
|
44 |
# logger.info(traceback.format_exc())
|
45 |
-
logger.info("%s is not in the checkpoint"
|
46 |
new_state_dict[k] = v # 模型自带的随机值
|
47 |
if hasattr(model, "module"):
|
48 |
model.module.load_state_dict(new_state_dict, strict=False)
|
49 |
else:
|
50 |
model.load_state_dict(new_state_dict, strict=False)
|
51 |
-
return model
|
52 |
|
53 |
go(combd, "combd")
|
54 |
-
|
55 |
#############
|
56 |
logger.info("Loaded model weights")
|
57 |
|
@@ -111,16 +106,14 @@ def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
|
111 |
try:
|
112 |
new_state_dict[k] = saved_state_dict[k]
|
113 |
if saved_state_dict[k].shape != state_dict[k].shape:
|
114 |
-
|
115 |
-
"shape-%s-mismatch|need-%s|get-%s"
|
116 |
-
k,
|
117 |
-
state_dict[k].shape,
|
118 |
-
saved_state_dict[k].shape,
|
119 |
) #
|
120 |
raise KeyError
|
121 |
except:
|
122 |
# logger.info(traceback.format_exc())
|
123 |
-
logger.info("%s is not in the checkpoint"
|
124 |
new_state_dict[k] = v # 模型自带的随机值
|
125 |
if hasattr(model, "module"):
|
126 |
model.module.load_state_dict(new_state_dict, strict=False)
|
@@ -211,7 +204,7 @@ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
|
211 |
f_list = glob.glob(os.path.join(dir_path, regex))
|
212 |
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
213 |
x = f_list[-1]
|
214 |
-
|
215 |
return x
|
216 |
|
217 |
|
@@ -291,8 +284,8 @@ def get_hparams(init=True):
|
|
291 |
bs done
|
292 |
pretrainG、pretrainD done
|
293 |
卡号:os.en["CUDA_VISIBLE_DEVICES"] done
|
294 |
-
if_latest
|
295 |
-
模型:if_f0
|
296 |
采样率:自动选择config done
|
297 |
是否缓存数据集进GPU:if_cache_data_in_gpu done
|
298 |
|
@@ -301,6 +294,7 @@ def get_hparams(init=True):
|
|
301 |
-c不要了
|
302 |
"""
|
303 |
parser = argparse.ArgumentParser()
|
|
|
304 |
parser.add_argument(
|
305 |
"-se",
|
306 |
"--save_every_epoch",
|
@@ -327,16 +321,6 @@ def get_hparams(init=True):
|
|
327 |
parser.add_argument(
|
328 |
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
329 |
)
|
330 |
-
parser.add_argument(
|
331 |
-
"-sw",
|
332 |
-
"--save_every_weights",
|
333 |
-
type=str,
|
334 |
-
default="0",
|
335 |
-
help="save the extracted model in weights directory when saving checkpoints",
|
336 |
-
)
|
337 |
-
parser.add_argument(
|
338 |
-
"-v", "--version", type=str, required=True, help="model version"
|
339 |
-
)
|
340 |
parser.add_argument(
|
341 |
"-f0",
|
342 |
"--if_f0",
|
@@ -363,9 +347,20 @@ def get_hparams(init=True):
|
|
363 |
name = args.experiment_dir
|
364 |
experiment_dir = os.path.join("./logs", args.experiment_dir)
|
365 |
|
|
|
|
|
|
|
|
|
366 |
config_save_path = os.path.join(experiment_dir, "config.json")
|
367 |
-
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
|
370 |
hparams = HParams(**config)
|
371 |
hparams.model_dir = hparams.experiment_dir = experiment_dir
|
@@ -374,13 +369,11 @@ def get_hparams(init=True):
|
|
374 |
hparams.total_epoch = args.total_epoch
|
375 |
hparams.pretrainG = args.pretrainG
|
376 |
hparams.pretrainD = args.pretrainD
|
377 |
-
hparams.version = args.version
|
378 |
hparams.gpus = args.gpus
|
379 |
hparams.train.batch_size = args.batch_size
|
380 |
hparams.sample_rate = args.sample_rate
|
381 |
hparams.if_f0 = args.if_f0
|
382 |
hparams.if_latest = args.if_latest
|
383 |
-
hparams.save_every_weights = args.save_every_weights
|
384 |
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
|
385 |
hparams.data.training_files = "%s/filelist.txt" % experiment_dir
|
386 |
return hparams
|
@@ -409,7 +402,7 @@ def get_hparams_from_file(config_path):
|
|
409 |
def check_git_hash(model_dir):
|
410 |
source_dir = os.path.dirname(os.path.realpath(__file__))
|
411 |
if not os.path.exists(os.path.join(source_dir, ".git")):
|
412 |
-
logger.
|
413 |
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
414 |
source_dir
|
415 |
)
|
@@ -422,7 +415,7 @@ def check_git_hash(model_dir):
|
|
422 |
if os.path.exists(path):
|
423 |
saved_hash = open(path).read()
|
424 |
if saved_hash != cur_hash:
|
425 |
-
logger.
|
426 |
"git hash values are different. {}(saved) != {}(current)".format(
|
427 |
saved_hash[:8], cur_hash[:8]
|
428 |
)
|
|
|
1 |
+
import os, traceback
|
2 |
import glob
|
3 |
+
import sys
|
4 |
+
import argparse
|
5 |
import logging
|
6 |
+
import json
|
7 |
import subprocess
|
|
|
|
|
|
|
8 |
import numpy as np
|
|
|
9 |
from scipy.io.wavfile import read
|
10 |
+
import torch
|
11 |
|
12 |
MATPLOTLIB_FLAG = False
|
13 |
|
|
|
31 |
try:
|
32 |
new_state_dict[k] = saved_state_dict[k]
|
33 |
if saved_state_dict[k].shape != state_dict[k].shape:
|
34 |
+
print(
|
35 |
+
"shape-%s-mismatch|need-%s|get-%s"
|
36 |
+
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
|
|
|
|
37 |
) #
|
38 |
raise KeyError
|
39 |
except:
|
40 |
# logger.info(traceback.format_exc())
|
41 |
+
logger.info("%s is not in the checkpoint" % k) # pretrain缺失的
|
42 |
new_state_dict[k] = v # 模型自带的随机值
|
43 |
if hasattr(model, "module"):
|
44 |
model.module.load_state_dict(new_state_dict, strict=False)
|
45 |
else:
|
46 |
model.load_state_dict(new_state_dict, strict=False)
|
|
|
47 |
|
48 |
go(combd, "combd")
|
49 |
+
go(sbd, "sbd")
|
50 |
#############
|
51 |
logger.info("Loaded model weights")
|
52 |
|
|
|
106 |
try:
|
107 |
new_state_dict[k] = saved_state_dict[k]
|
108 |
if saved_state_dict[k].shape != state_dict[k].shape:
|
109 |
+
print(
|
110 |
+
"shape-%s-mismatch|need-%s|get-%s"
|
111 |
+
% (k, state_dict[k].shape, saved_state_dict[k].shape)
|
|
|
|
|
112 |
) #
|
113 |
raise KeyError
|
114 |
except:
|
115 |
# logger.info(traceback.format_exc())
|
116 |
+
logger.info("%s is not in the checkpoint" % k) # pretrain缺失的
|
117 |
new_state_dict[k] = v # 模型自带的随机值
|
118 |
if hasattr(model, "module"):
|
119 |
model.module.load_state_dict(new_state_dict, strict=False)
|
|
|
204 |
f_list = glob.glob(os.path.join(dir_path, regex))
|
205 |
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
206 |
x = f_list[-1]
|
207 |
+
print(x)
|
208 |
return x
|
209 |
|
210 |
|
|
|
284 |
bs done
|
285 |
pretrainG、pretrainD done
|
286 |
卡号:os.en["CUDA_VISIBLE_DEVICES"] done
|
287 |
+
if_latest todo
|
288 |
+
模型:if_f0 todo
|
289 |
采样率:自动选择config done
|
290 |
是否缓存数据集进GPU:if_cache_data_in_gpu done
|
291 |
|
|
|
294 |
-c不要了
|
295 |
"""
|
296 |
parser = argparse.ArgumentParser()
|
297 |
+
# parser.add_argument('-c', '--config', type=str, default="configs/40k.json",help='JSON file for configuration')
|
298 |
parser.add_argument(
|
299 |
"-se",
|
300 |
"--save_every_epoch",
|
|
|
321 |
parser.add_argument(
|
322 |
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k"
|
323 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
parser.add_argument(
|
325 |
"-f0",
|
326 |
"--if_f0",
|
|
|
347 |
name = args.experiment_dir
|
348 |
experiment_dir = os.path.join("./logs", args.experiment_dir)
|
349 |
|
350 |
+
if not os.path.exists(experiment_dir):
|
351 |
+
os.makedirs(experiment_dir)
|
352 |
+
|
353 |
+
config_path = "configs/%s.json" % args.sample_rate
|
354 |
config_save_path = os.path.join(experiment_dir, "config.json")
|
355 |
+
if init:
|
356 |
+
with open(config_path, "r") as f:
|
357 |
+
data = f.read()
|
358 |
+
with open(config_save_path, "w") as f:
|
359 |
+
f.write(data)
|
360 |
+
else:
|
361 |
+
with open(config_save_path, "r") as f:
|
362 |
+
data = f.read()
|
363 |
+
config = json.loads(data)
|
364 |
|
365 |
hparams = HParams(**config)
|
366 |
hparams.model_dir = hparams.experiment_dir = experiment_dir
|
|
|
369 |
hparams.total_epoch = args.total_epoch
|
370 |
hparams.pretrainG = args.pretrainG
|
371 |
hparams.pretrainD = args.pretrainD
|
|
|
372 |
hparams.gpus = args.gpus
|
373 |
hparams.train.batch_size = args.batch_size
|
374 |
hparams.sample_rate = args.sample_rate
|
375 |
hparams.if_f0 = args.if_f0
|
376 |
hparams.if_latest = args.if_latest
|
|
|
377 |
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
|
378 |
hparams.data.training_files = "%s/filelist.txt" % experiment_dir
|
379 |
return hparams
|
|
|
402 |
def check_git_hash(model_dir):
|
403 |
source_dir = os.path.dirname(os.path.realpath(__file__))
|
404 |
if not os.path.exists(os.path.join(source_dir, ".git")):
|
405 |
+
logger.warn(
|
406 |
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
407 |
source_dir
|
408 |
)
|
|
|
415 |
if os.path.exists(path):
|
416 |
saved_hash = open(path).read()
|
417 |
if saved_hash != cur_hash:
|
418 |
+
logger.warn(
|
419 |
"git hash values are different. {}(saved) != {}(current)".format(
|
420 |
saved_hash[:8], cur_hash[:8]
|
421 |
)
|