qa_roberta / app.py
smjain's picture
Update app.py
291cace
raw
history blame
510 Bytes
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
import gradio as grad
import ast
mdl_name = "deepset/roberta-base-squad2"
my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
def answer_question(question,context):
text= "{"+"'question': '"+question+"','context': '"+context+"'}"
di=ast.literal_eval(text)
response = my_pipeline(di)
return response
grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()