Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.system("pip install gradio==2.9b24")
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
+
vocoder_url = 'https://bj.bcebos.com/v1/ai-studio-online/e46d52315a504f1fa520528582a8422b6fa7006463844b84b8a2c3d21cc314db?/Vocoder.zip'
|
8 |
+
models_url = 'https://bj.bcebos.com/v1/ai-studio-online/6c081f29caad483ebd4cded087ee6ddbfc8dca8fb89d4ab69d44253ce5525e32?/Models.zip'
|
9 |
+
|
10 |
+
from io import BytesIO
|
11 |
+
from zipfile import ZipFile
|
12 |
+
from urllib.request import urlopen
|
13 |
+
|
14 |
+
|
15 |
+
if not (os.path.isdir('Vocoder') and os.path.isdir('Models')):
|
16 |
+
for url in [vocoder_url, models_url]:
|
17 |
+
resp = urlopen(url)
|
18 |
+
zipfile = ZipFile(BytesIO(resp.read()))
|
19 |
+
zipfile.extractall()
|
20 |
+
|
21 |
+
|
22 |
+
import random
|
23 |
+
import yaml
|
24 |
+
from munch import Munch
|
25 |
+
import numpy as np
|
26 |
+
import paddle
|
27 |
+
from paddle import nn
|
28 |
+
import paddle.nn.functional as F
|
29 |
+
import paddleaudio
|
30 |
+
import librosa
|
31 |
+
|
32 |
+
from starganv2vc_paddle.Utils.JDC.model import JDCNet
|
33 |
+
from starganv2vc_paddle.models import Generator, MappingNetwork, StyleEncoder
|
34 |
+
|
35 |
+
|
36 |
+
speakers = [225,228,229,230,231,233,236,239,240,244,226,227,232,243,254,256,258,259,270,273]
|
37 |
+
|
38 |
+
to_mel = paddleaudio.features.MelSpectrogram(
|
39 |
+
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
|
40 |
+
to_mel.fbank_matrix[:] = paddle.load('starganv2vc_paddle/fbank_matrix.pd')['fbank_matrix']
|
41 |
+
mean, std = -4, 4
|
42 |
+
|
43 |
+
def preprocess(wave):
|
44 |
+
wave_tensor = paddle.to_tensor(wave).astype(paddle.float32)
|
45 |
+
mel_tensor = to_mel(wave_tensor)
|
46 |
+
mel_tensor = (paddle.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
|
47 |
+
return mel_tensor
|
48 |
+
|
49 |
+
def build_model(model_params={}):
|
50 |
+
args = Munch(model_params)
|
51 |
+
generator = Generator(args.dim_in, args.style_dim, args.max_conv_dim, w_hpf=args.w_hpf, F0_channel=args.F0_channel)
|
52 |
+
mapping_network = MappingNetwork(args.latent_dim, args.style_dim, args.num_domains, hidden_dim=args.max_conv_dim)
|
53 |
+
style_encoder = StyleEncoder(args.dim_in, args.style_dim, args.num_domains, args.max_conv_dim)
|
54 |
+
|
55 |
+
nets_ema = Munch(generator=generator,
|
56 |
+
mapping_network=mapping_network,
|
57 |
+
style_encoder=style_encoder)
|
58 |
+
|
59 |
+
return nets_ema
|
60 |
+
|
61 |
+
def compute_style(speaker_dicts):
|
62 |
+
reference_embeddings = {}
|
63 |
+
for key, (path, speaker) in speaker_dicts.items():
|
64 |
+
if path == "":
|
65 |
+
label = paddle.to_tensor([speaker], dtype=paddle.int64)
|
66 |
+
latent_dim = starganv2.mapping_network.shared[0].weight.shape[0]
|
67 |
+
ref = starganv2.mapping_network(paddle.randn([1, latent_dim]), label)
|
68 |
+
else:
|
69 |
+
wave, sr = librosa.load(path, sr=24000)
|
70 |
+
audio, index = librosa.effects.trim(wave, top_db=30)
|
71 |
+
if sr != 24000:
|
72 |
+
wave = librosa.resample(wave, sr, 24000)
|
73 |
+
mel_tensor = preprocess(wave)
|
74 |
+
|
75 |
+
with paddle.no_grad():
|
76 |
+
label = paddle.to_tensor([speaker], dtype=paddle.int64)
|
77 |
+
ref = starganv2.style_encoder(mel_tensor.unsqueeze(1), label)
|
78 |
+
reference_embeddings[key] = (ref, label)
|
79 |
+
|
80 |
+
return reference_embeddings
|
81 |
+
|
82 |
+
F0_model = JDCNet(num_class=1, seq_len=192)
|
83 |
+
params = paddle.load("Models/bst.pd")['net']
|
84 |
+
F0_model.set_state_dict(params)
|
85 |
+
_ = F0_model.eval()
|
86 |
+
|
87 |
+
import yaml
|
88 |
+
import paddle
|
89 |
+
|
90 |
+
from yacs.config import CfgNode
|
91 |
+
from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator
|
92 |
+
|
93 |
+
with open('Vocoder/config.yml') as f:
|
94 |
+
voc_config = CfgNode(yaml.safe_load(f))
|
95 |
+
voc_config["generator_params"].pop("upsample_net")
|
96 |
+
voc_config["generator_params"]["upsample_scales"] = voc_config["generator_params"].pop("upsample_params")["upsample_scales"]
|
97 |
+
vocoder = PWGGenerator(**voc_config["generator_params"])
|
98 |
+
vocoder.remove_weight_norm()
|
99 |
+
vocoder.eval()
|
100 |
+
vocoder.set_state_dict(paddle.load('Vocoder/checkpoint-400000steps.pd'))
|
101 |
+
|
102 |
+
model_path = 'Models/vc_ema.pd'
|
103 |
+
|
104 |
+
with open('Models/config.yml') as f:
|
105 |
+
starganv2_config = yaml.safe_load(f)
|
106 |
+
starganv2 = build_model(model_params=starganv2_config["model_params"])
|
107 |
+
params = paddle.load(model_path)
|
108 |
+
params = params['model_ema']
|
109 |
+
_ = [starganv2[key].set_state_dict(params[key]) for key in starganv2]
|
110 |
+
_ = [starganv2[key].eval() for key in starganv2]
|
111 |
+
starganv2.style_encoder = starganv2.style_encoder
|
112 |
+
starganv2.mapping_network = starganv2.mapping_network
|
113 |
+
starganv2.generator = starganv2.generator
|
114 |
+
|
115 |
+
# Compute speakers' styles under the Demo directory
|
116 |
+
speaker_dicts = {}
|
117 |
+
selected_speakers = [273, 259, 258, 243, 254, 244, 236, 233, 230, 228]
|
118 |
+
for s in selected_speakers:
|
119 |
+
k = s
|
120 |
+
speaker_dicts['p' + str(s)] = ('Demo/VCTK-corpus/p' + str(k) + '/p' + str(k) + '_023.wav', speakers.index(s))
|
121 |
+
|
122 |
+
reference_embeddings = compute_style(speaker_dicts)
|
123 |
+
|
124 |
+
examples = [['Demo/VCTK-corpus/p243/p243_023.wav', 'p236'], ['Demo/VCTK-corpus/p236/p236_023.wav', 'p243']]
|
125 |
+
|
126 |
+
|
127 |
+
def app(wav_path, speaker_id):
|
128 |
+
audio, _ = librosa.load(wav_path, sr=24000)
|
129 |
+
audio = audio / np.max(np.abs(audio))
|
130 |
+
audio.dtype = np.float32
|
131 |
+
source = preprocess(audio)
|
132 |
+
ref = reference_embeddings[speaker_id][0]
|
133 |
+
|
134 |
+
with paddle.no_grad():
|
135 |
+
f0_feat = F0_model.get_feature_GAN(source.unsqueeze(1))
|
136 |
+
out = starganv2.generator(source.unsqueeze(1), ref, F0=f0_feat)
|
137 |
+
|
138 |
+
c = out.transpose([0,1,3,2]).squeeze()
|
139 |
+
y_out = vocoder.inference(c)
|
140 |
+
y_out = y_out.reshape([-1])
|
141 |
+
|
142 |
+
return (24000, y_out.numpy())
|
143 |
+
|
144 |
+
title="StarGANv2 Voice Conversion"
|
145 |
+
description="Gradio Demo for voice conversion using paddlepaddle. "
|
146 |
+
|
147 |
+
iface = gr.Interface(app, [gr.inputs.Audio(source="microphone", type="filepath"),
|
148 |
+
gr.inputs.Radio(list(speaker_dicts.keys()), type="value", default='p228', label='speaker id')],
|
149 |
+
"audio", title=title, description=description, examples=examples)
|
150 |
+
|
151 |
+
iface.launch()
|