#coding:utf-8 import os, sys import os.path as osp import numpy as np import paddle from paddle import nn from paddle.optimizer import Optimizer from functools import reduce from paddle.optimizer import AdamW class MultiOptimizer: def __init__(self, optimizers={}, schedulers={}): self.optimizers = optimizers self.schedulers = schedulers self.keys = list(optimizers.keys()) def get_lr(self): return max([self.optimizers[key].get_lr() for key in self.keys]) def state_dict(self): state_dicts = [(key, self.optimizers[key].state_dict())\ for key in self.keys] return state_dicts def set_state_dict(self, state_dict): for key, val in state_dict: try: self.optimizers[key].set_state_dict(val) except: print("Unloaded %s" % key) def step(self, key=None, scaler=None): keys = [key] if key is not None else self.keys _ = [self._step(key, scaler) for key in keys] def _step(self, key, scaler=None): if scaler is not None: scaler.step(self.optimizers[key]) scaler.update() else: self.optimizers[key].step() def clear_grad(self, key=None): if key is not None: self.optimizers[key].clear_grad() else: _ = [self.optimizers[key].clear_grad() for key in self.keys] def scheduler(self, *args, key=None): if key is not None: self.schedulers[key].step(*args) else: _ = [self.schedulers[key].step(*args) for key in self.keys] def define_scheduler(params): print(params) # scheduler = paddle.optim.lr_scheduler.OneCycleLR( # max_lr=params.get('max_lr', 2e-4), # epochs=params.get('epochs', 200), # steps_per_epoch=params.get('steps_per_epoch', 1000), # pct_start=params.get('pct_start', 0.0), # div_factor=1, # final_div_factor=1) scheduler = paddle.optimizer.lr.CosineAnnealingDecay( learning_rate=params.get('max_lr', 2e-4), T_max=10) return scheduler def build_optimizer(parameters_dict, scheduler_params_dict): schedulers = dict([(key, define_scheduler(params)) \ for key, params in scheduler_params_dict.items()]) optim = dict([(key, AdamW(parameters=parameters_dict[key], learning_rate=sch, weight_decay=1e-4, beta1=0.1, beta2=0.99, epsilon=1e-9)) for key, sch in schedulers.items()]) multi_optim = MultiOptimizer(optim, schedulers) return multi_optim