#coding:utf-8 import os import paddle from paddle import nn from munch import Munch from starganv2vc_paddle.transforms import build_transforms import paddle.nn.functional as F import numpy as np def compute_d_loss(nets, args, x_real, y_org, y_trg, z_trg=None, x_ref=None, use_r1_reg=True, use_adv_cls=False, use_con_reg=False): args = Munch(args) assert (z_trg is None) != (x_ref is None) # with real audios x_real.stop_gradient = False out = nets.discriminator(x_real, y_org) loss_real = adv_loss(out, 1) # R1 regularizaition (https://arxiv.org/abs/1801.04406v4) if use_r1_reg: loss_reg = r1_reg(out, x_real) else: loss_reg = paddle.to_tensor([0.], dtype=paddle.float32) # consistency regularization (bCR-GAN: https://arxiv.org/abs/2002.04724) loss_con_reg = paddle.to_tensor([0.], dtype=paddle.float32) if use_con_reg: t = build_transforms() out_aug = nets.discriminator(t(x_real).detach(), y_org) loss_con_reg += F.smooth_l1_loss(out, out_aug) # with fake audios with paddle.no_grad(): if z_trg is not None: s_trg = nets.mapping_network(z_trg, y_trg) else: # x_ref is not None s_trg = nets.style_encoder(x_ref, y_trg) F0 = nets.f0_model.get_feature_GAN(x_real) x_fake = nets.generator(x_real, s_trg, masks=None, F0=F0) out = nets.discriminator(x_fake, y_trg) loss_fake = adv_loss(out, 0) if use_con_reg: out_aug = nets.discriminator(t(x_fake).detach(), y_trg) loss_con_reg += F.smooth_l1_loss(out, out_aug) # adversarial classifier loss if use_adv_cls: out_de = nets.discriminator.classifier(x_fake) loss_real_adv_cls = F.cross_entropy(out_de[y_org != y_trg], y_org[y_org != y_trg]) if use_con_reg: out_de_aug = nets.discriminator.classifier(t(x_fake).detach()) loss_con_reg += F.smooth_l1_loss(out_de, out_de_aug) else: loss_real_adv_cls = paddle.zeros([1]).mean() loss = loss_real + loss_fake + args.lambda_reg * loss_reg + \ args.lambda_adv_cls * loss_real_adv_cls + \ args.lambda_con_reg * loss_con_reg return loss, Munch(real=loss_real.item(), fake=loss_fake.item(), reg=loss_reg.item(), real_adv_cls=loss_real_adv_cls.item(), con_reg=loss_con_reg.item()) def compute_g_loss(nets, args, x_real, y_org, y_trg, z_trgs=None, x_refs=None, use_adv_cls=False): args = Munch(args) assert (z_trgs is None) != (x_refs is None) if z_trgs is not None: z_trg, z_trg2 = z_trgs if x_refs is not None: x_ref, x_ref2 = x_refs # compute style vectors if z_trgs is not None: s_trg = nets.mapping_network(z_trg, y_trg) else: s_trg = nets.style_encoder(x_ref, y_trg) # compute ASR/F0 features (real) with paddle.no_grad(): F0_real, GAN_F0_real, cyc_F0_real = nets.f0_model(x_real) ASR_real = nets.asr_model.get_feature(x_real) # adversarial loss x_fake = nets.generator(x_real, s_trg, masks=None, F0=GAN_F0_real) out = nets.discriminator(x_fake, y_trg) loss_adv = adv_loss(out, 1) # compute ASR/F0 features (fake) F0_fake, GAN_F0_fake, _ = nets.f0_model(x_fake) ASR_fake = nets.asr_model.get_feature(x_fake) # norm consistency loss x_fake_norm = log_norm(x_fake) x_real_norm = log_norm(x_real) loss_norm = ((paddle.nn.ReLU()(paddle.abs(x_fake_norm - x_real_norm) - args.norm_bias))**2).mean() # F0 loss loss_f0 = f0_loss(F0_fake, F0_real) # style F0 loss (style initialization) if x_refs is not None and args.lambda_f0_sty > 0 and not use_adv_cls: F0_sty, _, _ = nets.f0_model(x_ref) loss_f0_sty = F.l1_loss(compute_mean_f0(F0_fake), compute_mean_f0(F0_sty)) else: loss_f0_sty = paddle.zeros([1]).mean() # ASR loss loss_asr = F.smooth_l1_loss(ASR_fake, ASR_real) # style reconstruction loss s_pred = nets.style_encoder(x_fake, y_trg) loss_sty = paddle.mean(paddle.abs(s_pred - s_trg)) # diversity sensitive loss if z_trgs is not None: s_trg2 = nets.mapping_network(z_trg2, y_trg) else: s_trg2 = nets.style_encoder(x_ref2, y_trg) x_fake2 = nets.generator(x_real, s_trg2, masks=None, F0=GAN_F0_real) x_fake2 = x_fake2.detach() _, GAN_F0_fake2, _ = nets.f0_model(x_fake2) loss_ds = paddle.mean(paddle.abs(x_fake - x_fake2)) loss_ds += F.smooth_l1_loss(GAN_F0_fake, GAN_F0_fake2.detach()) # cycle-consistency loss s_org = nets.style_encoder(x_real, y_org) x_rec = nets.generator(x_fake, s_org, masks=None, F0=GAN_F0_fake) loss_cyc = paddle.mean(paddle.abs(x_rec - x_real)) # F0 loss in cycle-consistency loss if args.lambda_f0 > 0: _, _, cyc_F0_rec = nets.f0_model(x_rec) loss_cyc += F.smooth_l1_loss(cyc_F0_rec, cyc_F0_real) if args.lambda_asr > 0: ASR_recon = nets.asr_model.get_feature(x_rec) loss_cyc += F.smooth_l1_loss(ASR_recon, ASR_real) # adversarial classifier loss if use_adv_cls: out_de = nets.discriminator.classifier(x_fake) loss_adv_cls = F.cross_entropy(out_de[y_org != y_trg], y_trg[y_org != y_trg]) else: loss_adv_cls = paddle.zeros([1]).mean() loss = args.lambda_adv * loss_adv + args.lambda_sty * loss_sty \ - args.lambda_ds * loss_ds + args.lambda_cyc * loss_cyc\ + args.lambda_norm * loss_norm \ + args.lambda_asr * loss_asr \ + args.lambda_f0 * loss_f0 \ + args.lambda_f0_sty * loss_f0_sty \ + args.lambda_adv_cls * loss_adv_cls return loss, Munch(adv=loss_adv.item(), sty=loss_sty.item(), ds=loss_ds.item(), cyc=loss_cyc.item(), norm=loss_norm.item(), asr=loss_asr.item(), f0=loss_f0.item(), adv_cls=loss_adv_cls.item()) # for norm consistency loss def log_norm(x, mean=-4, std=4, axis=2): """ normalized log mel -> mel -> norm -> log(norm) """ x = paddle.log(paddle.exp(x * std + mean).norm(axis=axis)) return x # for adversarial loss def adv_loss(logits, target): assert target in [1, 0] if len(logits.shape) > 1: logits = logits.reshape([-1]) targets = paddle.full_like(logits, fill_value=target) logits = logits.clip(min=-10, max=10) # prevent nan loss = F.binary_cross_entropy_with_logits(logits, targets) return loss # for R1 regularization loss def r1_reg(d_out, x_in): # zero-centered gradient penalty for real images batch_size = x_in.shape[0] grad_dout = paddle.grad( outputs=d_out.sum(), inputs=x_in, create_graph=True, retain_graph=True, only_inputs=True )[0] grad_dout2 = grad_dout.pow(2) assert(grad_dout2.shape == x_in.shape) reg = 0.5 * grad_dout2.reshape((batch_size, -1)).sum(1).mean(0) return reg # for F0 consistency loss def compute_mean_f0(f0): f0_mean = f0.mean(-1) f0_mean = f0_mean.expand((f0.shape[-1], f0_mean.shape[0])).transpose((1, 0)) # (B, M) return f0_mean def f0_loss(x_f0, y_f0): """ x.shape = (B, 1, M, L): predict y.shape = (B, 1, M, L): target """ # compute the mean x_mean = compute_mean_f0(x_f0) y_mean = compute_mean_f0(y_f0) loss = F.l1_loss(x_f0 / x_mean, y_f0 / y_mean) return loss