File size: 29,610 Bytes
2cd4b2a
c15417b
 
 
 
eb710fe
 
 
 
 
 
 
 
86ffd66
dfca074
9f713c2
c15417b
99e4caa
 
 
 
 
 
 
 
 
 
 
 
 
eb710fe
3b7acd7
31081a5
76ee786
ac24ff3
4e3e10a
99e4caa
 
18b14c9
99e4caa
 
 
2d4497e
99e4caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ee786
99e4caa
 
 
 
 
31081a5
99e4caa
31081a5
99e4caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5c27d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a03874
f5c27d3
99e4caa
76ee786
99e4caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a03874
8601f5f
99e4caa
 
 
 
a020647
99e4caa
8601f5f
99e4caa
 
4a03874
 
 
95621e2
c145ee2
4a03874
 
 
99e4caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec1efbd
 
 
 
 
4bf9cee
 
e0e9bed
 
99e4caa
e0e9bed
 
99e4caa
 
 
76ee786
99e4caa
 
 
 
 
 
76ee786
9935195
3b7acd7
31081a5
99e4caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ee786
99e4caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ffd66
99e4caa
 
 
 
 
 
 
 
 
 
 
621123f
 
31081a5
99e4caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f15739b
99e4caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31081a5
 
99e4caa
 
 
 
 
 
31081a5
99e4caa
 
 
 
 
 
 
 
 
f15739b
99e4caa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f15739b
 
31081a5
f15739b
31081a5
 
99e4caa
 
 
 
 
 
 
 
 
 
 
 
31081a5
99e4caa
 
 
 
4e3e10a
99e4caa
76ee786
 
 
 
 
 
 
99e4caa
 
76ee786
 
99e4caa
 
 
76ee786
 
 
 
99e4caa
 
76ee786
99e4caa
 
 
31081a5
99e4caa
 
76ee786
 
 
 
 
 
 
 
99e4caa
 
76ee786
 
 
 
 
 
 
 
 
 
99e4caa
 
76ee786
99e4caa
 
 
76ee786
 
99e4caa
76ee786
99e4caa
 
 
 
76ee786
99e4caa
76ee786
 
f15739b
99e4caa
 
 
 
 
 
 
 
 
 
76ee786
99e4caa
 
 
 
 
 
76ee786
99e4caa
 
 
 
 
 
76ee786
99e4caa
 
 
 
 
 
 
 
 
621123f
99e4caa
76ee786
 
99e4caa
76ee786
99e4caa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
import os
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
import gradio as gr
import sys
import tqdm
sys.path.append(os.path.abspath(os.path.join("", "..")))
import gc
import warnings
warnings.filterwarnings("ignore")
from PIL import Image
import numpy as np
from editing import get_direction, debias
from sampling import sample_weights
from lora_w2w import LoRAw2w
from transformers import CLIPTextModel
from lora_w2w import LoRAw2w
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, LMSDiscreteScheduler
from transformers import AutoTokenizer, PretrainedConfig
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
    DPMSolverMultistepScheduler,
    UNet2DConditionModel,
    PNDMScheduler, 
    StableDiffusionPipeline
)
from huggingface_hub import snapshot_download
import spaces

models_path = snapshot_download(repo_id="Snapchat/w2w")

@spaces.GPU
def load_models(device):
    pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51" 
    
    revision = None
    rank = 1
    weight_dtype = torch.bfloat16
    
    # Load scheduler, tokenizer and models.
    pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51", 
                                                torch_dtype=torch.float16,safety_checker = None,
                                                requires_safety_checker = False).to(device)
    noise_scheduler = pipe.scheduler
    del pipe
    tokenizer = AutoTokenizer.from_pretrained(
            pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
        )
    text_encoder = CLIPTextModel.from_pretrained(
            pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
        )
    vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
    unet = UNet2DConditionModel.from_pretrained(
            pretrained_model_name_or_path, subfolder="unet", revision=revision
        )
    unet.requires_grad_(False)
    unet.to(device, dtype=weight_dtype)
    vae.requires_grad_(False)
    
    text_encoder.requires_grad_(False)
    vae.requires_grad_(False)
    vae.to(device, dtype=weight_dtype)
    text_encoder.to(device, dtype=weight_dtype)
    print("")

    return unet, vae, text_encoder, tokenizer, noise_scheduler

class main():
    def __init__(self):
        super(main, self).__init__()
        
        device = "cuda"
        mean = torch.load(f"{models_path}/files/mean.pt", map_location=torch.device('cpu')).bfloat16().to(device)
        std = torch.load(f"{models_path}/files/std.pt", map_location=torch.device('cpu')).bfloat16().to(device)
        v = torch.load(f"{models_path}/files/V.pt", map_location=torch.device('cpu')).bfloat16().to(device)
        proj = torch.load(f"{models_path}/files/proj_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device)
        df = torch.load(f"{models_path}/files/identity_df.pt")
        weight_dimensions = torch.load(f"{models_path}/files/weight_dimensions.pt")
        pinverse = torch.load(f"{models_path}/files/pinverse_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device)

        self.device = device
        self.mean = mean
        self.std = std
        self.v = v
        self.proj = proj
        self.df = df
        self.weight_dimensions = weight_dimensions
        self.pinverse = pinverse
        
        pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51" 
    
        revision = None
        rank = 1
        weight_dtype = torch.bfloat16
        
        # Load scheduler, tokenizer and models.
        pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51", 
                                                    torch_dtype=torch.float16,safety_checker = None,
                                                    requires_safety_checker = False).to(device)
        self.noise_scheduler = pipe.scheduler
        del pipe
        self.tokenizer = AutoTokenizer.from_pretrained(
                pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
            )
        self.text_encoder = CLIPTextModel.from_pretrained(
                pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
            )
        self.vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
        self.unet = UNet2DConditionModel.from_pretrained(
                pretrained_model_name_or_path, subfolder="unet", revision=revision
            )
        
        self.unet.requires_grad_(False)
        self.unet.to(device, dtype=weight_dtype)
        self.vae.requires_grad_(False)
        
        self.text_encoder.requires_grad_(False)
        self.vae.requires_grad_(False)
        self.vae.to(device, dtype=weight_dtype)
        self.text_encoder.to(device, dtype=weight_dtype)
        print("")

        
        self.network = None
    
        young = get_direction(df, "Young", pinverse, 1000, device)
        young = debias(young, "Male", df, pinverse, device)
        young = debias(young, "Pointy_Nose", df, pinverse, device)
        young = debias(young, "Wavy_Hair", df, pinverse, device)
        young = debias(young, "Chubby", df, pinverse, device)
        young = debias(young, "No_Beard", df, pinverse, device)
        young = debias(young, "Mustache", df, pinverse, device)
        self.young = young
    
        pointy = get_direction(df, "Pointy_Nose", pinverse, 1000, device)
        pointy = debias(pointy, "Young", df, pinverse, device)
        pointy = debias(pointy, "Male", df, pinverse, device)
        pointy = debias(pointy, "Wavy_Hair", df, pinverse, device)
        pointy = debias(pointy, "Chubby", df, pinverse, device)
        pointy = debias(pointy, "Heavy_Makeup", df, pinverse, device)
        self.pointy = pointy
    
        wavy = get_direction(df, "Wavy_Hair", pinverse, 1000, device)
        wavy = debias(wavy, "Young", df, pinverse, device)
        wavy = debias(wavy, "Male", df, pinverse, device)
        wavy = debias(wavy, "Pointy_Nose", df, pinverse, device)
        wavy = debias(wavy, "Chubby", df, pinverse, device)
        wavy = debias(wavy, "Heavy_Makeup", df, pinverse, device)
        self.wavy = wavy
    
    
        thick = get_direction(df, "Bushy_Eyebrows", pinverse, 1000, device)
        thick = debias(thick, "Male", df, pinverse, device)
        thick = debias(thick, "Young", df, pinverse, device)
        thick = debias(thick, "Pointy_Nose", df, pinverse, device)
        thick = debias(thick, "Wavy_Hair", df, pinverse, device)
        thick = debias(thick, "Mustache", df, pinverse, device)
        thick = debias(thick, "No_Beard", df, pinverse, device)
        thick = debias(thick, "Sideburns", df, pinverse, device)
        thick = debias(thick, "Big_Nose", df, pinverse, device)
        thick = debias(thick, "Big_Lips", df, pinverse, device)
        thick = debias(thick, "Black_Hair", df, pinverse, device)
        thick = debias(thick, "Brown_Hair", df, pinverse, device)
        thick = debias(thick, "Pale_Skin", df, pinverse, device)
        thick = debias(thick, "Heavy_Makeup", df, pinverse, device)
        self.thick = thick


    @torch.no_grad()
    @spaces.GPU(duration=1000)
    def sample_model(self):
        self.unet, _, _, _, _ = load_models(self.device)
        self.network = sample_weights(self.unet, self.proj, self.mean, self.std, self.v[:, :1000], self.device, factor = 1.00)
            
 
    @torch.no_grad()
    @spaces.GPU(duration=1000)
    def inference(self, prompt, negative_prompt, guidance_scale, ddim_steps, seed):
        device = self.device
        self.unet.to(device)
        self.text_encoder.to(device)
        self.vae.to(device)
        self.network.to(device)
        
        

        
        generator = torch.Generator(device=device).manual_seed(seed)
        latents = torch.randn(
                (1, self.unet.in_channels, 512 // 8, 512 // 8),
                generator = generator,
                device = self.device
            ).bfloat16()
           
        
        text_input = self.tokenizer(prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
        
        text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
        
        max_length = text_input.input_ids.shape[-1]
        uncond_input = self.tokenizer(
                                    [negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
                                )
        uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
        self.noise_scheduler.set_timesteps(ddim_steps) 
        latents = latents * self.noise_scheduler.init_noise_sigma
            
        for i,t in enumerate(tqdm.tqdm(self.noise_scheduler.timesteps)):
            latent_model_input = torch.cat([latents] * 2)
            latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep=t)
            with self.network:
                print(latent_model_input.device)
                print(self.unet.device)
                print(self.text_encoder.device)
                print(self.vae.device)
                print(self.network.proj.device)
                print(self.network.mean.device)
                print(self.network.std.device)
                print(self.network.v.device)
                print(text_embeddings.device)
                noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
            print("after inference")
            #guidance
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
            latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
            
        latents = 1 / 0.18215 * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
        
        image = Image.fromarray((image * 255).round().astype("uint8"))
        
        return image


    @torch.no_grad()
    @spaces.GPU
    def edit_inference(self, prompt, negative_prompt, guidance_scale, ddim_steps, seed, start_noise, a1, a2, a3, a4): 
        device = self.device
        original_weights = self,network.proj.clone()
            
        #pad to same number of PCs
        pcs_original = original_weights.shape[1]
        pcs_edits = self.young.shape[1]
        padding =  torch.zeros((1,pcs_original-pcs_edits)).to(device)
        young_pad = torch.cat((self.young, padding), 1)
        pointy_pad = torch.cat((self.pointy, padding), 1)
        wavy_pad = torch.cat((self.wavy, padding), 1)
        thick_pad = torch.cat((self.thick, padding), 1)
            
        
        edited_weights = original_weights+a1*1e6*young_pad+a2*1e6*pointy_pad+a3*1e6*wavy_pad+a4*2e6*thick_pad
           
        generator = torch.Generator(device=device).manual_seed(seed)
        latents = torch.randn(
                (1, self.unet.in_channels, 512 // 8, 512 // 8),
                generator = generator,
                device = self.device
            ).bfloat16()
           
        
        text_input = self.tokenizer(prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
        
        text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
        
        max_length = text_input.input_ids.shape[-1]
        uncond_input = tokenizer(
                                    [negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
                                )
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
        text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
        noise_scheduler.set_timesteps(ddim_steps) 
        latents = latents * noise_scheduler.init_noise_sigma
            
        
         
        for i,t in enumerate(tqdm.tqdm(self.noise_scheduler.timesteps)):
            latent_model_input = torch.cat([latents] * 2)
            latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep=t)
                
            if t>start_noise:
                pass
            elif t<=start_noise:
                self.network.proj = torch.nn.Parameter(edited_weights)
                self.network.reset()
        
        
            with self.network:
                noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
                    
                
            #guidance
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
            latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
            
        latents = 1 / 0.18215 * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        
        image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
        
        image = Image.fromarray((image * 255).round().astype("uint8"))
        
        #reset weights back to original 
        self.network.proj = torch.nn.Parameter(original_weights)
        self.network.reset()
        
        return image

    @spaces.GPU
    def sample_then_run(self):
        self.sample_model()    
        prompt = "sks person"
        negative_prompt = "low quality, blurry, unfinished, nudity, weapon"
        seed = 5
        cfg = 3.0
        steps = 25
        image = self.inference( prompt, negative_prompt, cfg, steps, seed)
        torch.save(self.network.proj, "model.pt" )
        return image, "model.pt"



    class CustomImageDataset(Dataset):
        def __init__(self, images, transform=None):
            self.images = images
            self.transform = transform
        
        def __len__(self):
            return len(self.images)
        
        def __getitem__(self, idx):
            image = self.images[idx]
            if self.transform:
                image = self.transform(image)
            return image
        
    @spaces.GPU
    def invert(self, image, mask, pcs=10000, epochs=400, weight_decay = 1e-10, lr=1e-1):
            
        del unet
        del network
        unet, _, _, _, _ = load_models(device)
            
        proj = torch.zeros(1,pcs).bfloat16().to(device)
        network = LoRAw2w( proj, mean, std, v[:, :pcs], 
                                unet,
                                rank=1,
                                multiplier=1.0,
                                alpha=27.0,
                                train_method="xattn-strict"
                            ).to(device, torch.bfloat16)
    
        ### load mask
        mask = transforms.Resize((64,64), interpolation=transforms.InterpolationMode.BILINEAR)(mask)
        mask = torchvision.transforms.functional.pil_to_tensor(mask).unsqueeze(0).to(device).bfloat16()[:,0,:,:].unsqueeze(1)
        ### check if an actual mask was draw, otherwise mask is just all ones
        if torch.sum(mask) == 0:
            mask = torch.ones((1,1,64,64)).to(device).bfloat16()
                
        ### single image dataset
        image_transforms = transforms.Compose([transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR),
                                                        transforms.RandomCrop(512),
                                                        transforms.ToTensor(),
                                                        transforms.Normalize([0.5], [0.5])])
        
        
        train_dataset = CustomImageDataset(image, transform=image_transforms)
        train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=True) 
        
        ### optimizer 
        optim = torch.optim.Adam(network.parameters(), lr=lr, weight_decay=weight_decay)    
        
        ### training loop
        unet.train()
        for epoch in tqdm.tqdm(range(epochs)):
            for batch in train_dataloader:
                ### prepare inputs
                batch = batch.to(device).bfloat16()
                latents = vae.encode(batch).latent_dist.sample()
                latents = latents*0.18215
                noise = torch.randn_like(latents)
                bsz = latents.shape[0]
                 
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
                text_input = tokenizer("sks person", padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
                text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
        
                ### loss + sgd step
                with network:
                    model_pred = unet(noisy_latents, timesteps, text_embeddings).sample
                    loss = torch.nn.functional.mse_loss(mask*model_pred.float(), mask*noise.float(), reduction="mean")
                    optim.zero_grad()
                    loss.backward()
                    optim.step()
        
        ### return optimized network
        return network


    @spaces.GPU
    def run_inversion(self, dict, pcs, epochs, weight_decay,lr):
        init_image = dict["image"].convert("RGB").resize((512, 512))
        mask = dict["mask"].convert("RGB").resize((512, 512))
        network = invert([init_image], mask, pcs, epochs, weight_decay,lr)
        
        
        #sample an image
        prompt = "sks person"
        negative_prompt = "low quality, blurry, unfinished, nudity"
        seed = 5
        cfg = 3.0
        steps = 25
        image = inference( prompt, negative_prompt, cfg, steps, seed)
        torch.save(network.proj, "model.pt" )
        return image, "model.pt"
    
    
    @spaces.GPU
    def file_upload(self, file):
          
        proj = torch.load(file.name).to(device)
        
        #pad to 10000 Principal components to keep everything consistent
        pcs = proj.shape[1]
        padding =  torch.zeros((1,10000-pcs)).to(device)
        proj = torch.cat((proj, padding), 1)
        
        unet, _, _, _, _ = load_models(device)
        
        
        network = LoRAw2w( proj, mean, std, v[:, :10000], 
                                unet,
                                rank=1,
                                multiplier=1.0,
                                alpha=27.0,
                                train_method="xattn-strict"
                            ).to(device, torch.bfloat16)
                
            
        prompt = "sks person"
        negative_prompt = "low quality, blurry, unfinished, nudity"
        seed = 5
        cfg = 3.0
        steps = 25
        image = inference( prompt, negative_prompt, cfg, steps, seed)
        return image
    
    

    
intro = """
<div style="display: flex;align-items: center;justify-content: center">
        <h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block"><em>weights2weights</em> Demo</h1>
        <h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Interpreting the Weight Space of Customized Diffusion Models</h3>
    </div>
    <p style="font-size: 0.95rem;margin: 0rem;line-height: 1.2em;margin-top:1em;display: inline-block">
        <a href="https://snap-research.github.io/weights2weights/" target="_blank">Project Page</a> | <a href="https://arxiv.org/abs/2406.09413" target="_blank">Paper</a>
         |  <a href="https://github.com/snap-research/weights2weights" target="_blank">Code</a> |
        <a href="https://huggingface.co/spaces/Snapchat/w2w-demo?duplicate=true" target="_blank" style="
            display: inline-block;
        ">
        <img style="margin-top: -1em;margin-bottom: 0em;position: absolute;" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a>
    </p>
    """
    
    
    
with gr.Blocks(css="style.css") as demo:
    model = main()    
    gr.HTML(intro)
        
    gr.Markdown("""<div style="text-align: justify;"> In this demo, you can get an identity-encoding model by sampling or inverting. To use a model previously downloaded from this demo see \"Uploading a model\" in the Advanced Options. Next, you can generate new images from it, or edit the identity encoded in the model and generate images from the edited model. We provide detailed instructions and tips at the bottom of the page.""")
    with gr.Column():
            with gr.Row():
                with gr.Column(): 
                    gr.Markdown("""1) Either sample a new model, or upload an image (optionally draw a mask over the head) and click `invert`.""")
                    sample = gr.Button("🎲 Sample New Model")
                    input_image = gr.ImageEditor(elem_id="image_upload", type='pil', label="Reference Identity",
                                               width=512, height=512)    
                      
                    with gr.Row():
                        invert_button = gr.Button("⬆️ Invert")
    
    
    
                with gr.Column():
                    gr.Markdown("""2) Generate images of the sampled/inverted identity or edit the identity with the sliders and generate new images with various prompts and seeds.""")
                    gallery = gr.Image(label="Generated Image",height=512, width=512, interactive=False)
                    submit = gr.Button("Generate")
    
                        
            prompt = gr.Textbox(label="Prompt",
                                                info="Make sure to include 'sks person'" ,
                                                placeholder="sks person", 
                                                value="sks person")
                
            seed = gr.Number(value=5, label="Seed", precision=0, interactive=True)
                    
            # Editing 
            with gr.Column():
                with gr.Row():
                    a1 = gr.Slider(label="- Young +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
                    a2 = gr.Slider(label="- Pointy Nose +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)       
                with gr.Row():        
                    a3 = gr.Slider(label="- Curly Hair +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
                    a4 = gr.Slider(label="- Thick Eyebrows +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
    
                
            with gr.Accordion("Advanced Options", open=False):
                with gr.Tab("Inversion"):
                    with gr.Row():     
                        lr = gr.Number(value=1e-1, label="Learning Rate", interactive=True)
                        pcs = gr.Slider(label="# Principal Components", value=10000, step=1, minimum=1, maximum=10000, interactive=True)
                    with gr.Row():
                        epochs = gr.Slider(label="Epochs", value=800, step=1, minimum=1, maximum=2000, interactive=True)
                        weight_decay = gr.Number(value=1e-10, label="Weight Decay", interactive=True)
                with gr.Tab("Sampling"):
                    with gr.Row():     
                        cfg= gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
                        steps = gr.Slider(label="Inference Steps",  value=25, step=1, minimum=0, maximum=100, interactive=True)
                    with gr.Row():
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, nudity, weapon", value="low quality, blurry, unfinished, nudity, weapon")
                        injection_step = gr.Slider(label="Injection Step",  value=800, step=1, minimum=0, maximum=1000, interactive=True)
                                
                with gr.Tab("Uploading a model"):
                    gr.Markdown("""<div style="text-align: justify;">Upload a model below downloaded from this demo.""")
    
                    file_input = gr.File(label="Upload Model", container=True)
    
         
    
    
    gr.Markdown("""<div style="text-align: justify;"> After sampling a new model or inverting, you can download the model below.""")
    
    with gr.Row():
        file_output = gr.File(label="Download Sampled/Inverted Model", container=True, interactive=False)
            
    
    
    
        invert_button.click(fn=model.run_inversion,
                        inputs=[input_image, pcs, epochs, weight_decay,lr], 
                        outputs = [input_image, file_output])
            
                
        sample.click(fn=model.sample_then_run, outputs=[input_image, file_output])
            
        submit.click(
                fn=model.edit_inference, inputs=[prompt, negative_prompt, cfg, steps, seed, injection_step, a1, a2, a3, a4], outputs=[gallery]
            )
        file_input.change(fn=model.file_upload, inputs=file_input, outputs = gallery)
    
    
    
    help_text1 = """
            <b>Instructions</b>:
            1. To get results faster without waiting in queue, you can duplicate into a private space with an A100 GPU.
            2. To begin, you will have to get an identity-encoding model. You can either sample one from *weights2weights* space by clicking `Sample New Model` or by uploading an image and clicking `invert` to invert the identity into a model. You can optionally draw over the head to define a mask in the image for better results. Sampling a model takes around 10 seconds and inversion takes around 2 minutes. After this is done, you can optionally download this model for later use. A model can be uploaded in the \"Uploading a model\" tab in the `Advanced Options`.   
            3. After getting a model, an image of the identity will be displayed on the right. You can sample from the model by changing seeds as well as prompts and then clicking `Generate`. Make sure to include \"sks person\" in your prompt to keep the same identity.
            4. The identity in the model can be edited by changing the sliders for various attributes. After clicking `Generate`, you can see how the identity has changed and the effects are maintained across different seeds and prompts. 
            """
    help_text2 = """<b>Tips</b>:
            1. Editing and Identity Generation
                * If you are interested in preserving more of the image during identity-editing (i.e., where the same seed and prompt results in the same image with only the identity changed), you can play with the "Injection Step" parameter in the \"Sampling\" tab in the `Advanced Options`. During the first *n* timesteps, the original model's weights will be used, and then the edited weights will be set during the remaining steps. Values closer to 1000 will set the edited weights early, having a more pronounced effect, which may disrupt some semantics and structure of the generated image. Lower values will set the edited weights later, better preserving image context. We notice that around 600-800 tends to produce the best results. Larger values in the range (700-1000) are helpful for more global attribute changes, while smaller (400-700) can be used for more finegrained edits. Although it is not always needed.
                * You can play around with negative prompts, number of inference steps, and CFG in the \"Sampling\" tab in the `Advanced Options` to affect the ultimate image quality.
                * Sometimes the identity will not be perfectly consistent (e.g., there might be small variations of the face) when you use some seeds or prompts. This is a limitation of our method as well as an open-problem in personalized models. 
            2. Inversion 
                * To obtain the best results for inversion, upload a high resolution photo of the face with minimal occlusion. It is recommended to draw over the face and hair to define a mask. But inversion should still work generally for non-closeup face shots.
                * For inverting a realistic photo of an identity, typically 800 epochs with lr=1e-1 and 10,000 principal components (PCs) works well. If the resulting generations have artifacted and unrealstic textures, there is probably overfitting and you may want to reduce the number of epochs or learning rate, or play with weight decay. If the generations do not look like the input photo, then you may want to increase the number of epochs.
                * For inverting out-of-distribution identities, such as artistic renditions of people or non-humans (e.g. the ones shown in the paper), it is recommended to use 1000 PCs, lr=1, and train for 800 epochs.
                * Note that if you change the number of PCs, you will probably need to change the learning rate. For less PCs, higher learning rates are typically required.""" 
        
            
    gr.Markdown(help_text1)
    gr.Markdown(help_text2)
        
demo.queue().launch()