Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,610 Bytes
2cd4b2a c15417b eb710fe 86ffd66 dfca074 9f713c2 c15417b 99e4caa eb710fe 3b7acd7 31081a5 76ee786 ac24ff3 4e3e10a 99e4caa 18b14c9 99e4caa 2d4497e 99e4caa 76ee786 99e4caa 31081a5 99e4caa 31081a5 99e4caa f5c27d3 4a03874 f5c27d3 99e4caa 76ee786 99e4caa 4a03874 8601f5f 99e4caa a020647 99e4caa 8601f5f 99e4caa 4a03874 95621e2 c145ee2 4a03874 99e4caa ec1efbd 4bf9cee e0e9bed 99e4caa e0e9bed 99e4caa 76ee786 99e4caa 76ee786 9935195 3b7acd7 31081a5 99e4caa 76ee786 99e4caa 86ffd66 99e4caa 621123f 31081a5 99e4caa f15739b 99e4caa 31081a5 99e4caa 31081a5 99e4caa f15739b 99e4caa f15739b 31081a5 f15739b 31081a5 99e4caa 31081a5 99e4caa 4e3e10a 99e4caa 76ee786 99e4caa 76ee786 99e4caa 76ee786 99e4caa 76ee786 99e4caa 31081a5 99e4caa 76ee786 99e4caa 76ee786 99e4caa 76ee786 99e4caa 76ee786 99e4caa 76ee786 99e4caa 76ee786 99e4caa 76ee786 f15739b 99e4caa 76ee786 99e4caa 76ee786 99e4caa 76ee786 99e4caa 621123f 99e4caa 76ee786 99e4caa 76ee786 99e4caa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
import os
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
import gradio as gr
import sys
import tqdm
sys.path.append(os.path.abspath(os.path.join("", "..")))
import gc
import warnings
warnings.filterwarnings("ignore")
from PIL import Image
import numpy as np
from editing import get_direction, debias
from sampling import sample_weights
from lora_w2w import LoRAw2w
from transformers import CLIPTextModel
from lora_w2w import LoRAw2w
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, LMSDiscreteScheduler
from transformers import AutoTokenizer, PretrainedConfig
from diffusers import (
AutoencoderKL,
DDPMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
UNet2DConditionModel,
PNDMScheduler,
StableDiffusionPipeline
)
from huggingface_hub import snapshot_download
import spaces
models_path = snapshot_download(repo_id="Snapchat/w2w")
@spaces.GPU
def load_models(device):
pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
revision = None
rank = 1
weight_dtype = torch.bfloat16
# Load scheduler, tokenizer and models.
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
torch_dtype=torch.float16,safety_checker = None,
requires_safety_checker = False).to(device)
noise_scheduler = pipe.scheduler
del pipe
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
)
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path, subfolder="unet", revision=revision
)
unet.requires_grad_(False)
unet.to(device, dtype=weight_dtype)
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
vae.requires_grad_(False)
vae.to(device, dtype=weight_dtype)
text_encoder.to(device, dtype=weight_dtype)
print("")
return unet, vae, text_encoder, tokenizer, noise_scheduler
class main():
def __init__(self):
super(main, self).__init__()
device = "cuda"
mean = torch.load(f"{models_path}/files/mean.pt", map_location=torch.device('cpu')).bfloat16().to(device)
std = torch.load(f"{models_path}/files/std.pt", map_location=torch.device('cpu')).bfloat16().to(device)
v = torch.load(f"{models_path}/files/V.pt", map_location=torch.device('cpu')).bfloat16().to(device)
proj = torch.load(f"{models_path}/files/proj_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device)
df = torch.load(f"{models_path}/files/identity_df.pt")
weight_dimensions = torch.load(f"{models_path}/files/weight_dimensions.pt")
pinverse = torch.load(f"{models_path}/files/pinverse_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device)
self.device = device
self.mean = mean
self.std = std
self.v = v
self.proj = proj
self.df = df
self.weight_dimensions = weight_dimensions
self.pinverse = pinverse
pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
revision = None
rank = 1
weight_dtype = torch.bfloat16
# Load scheduler, tokenizer and models.
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
torch_dtype=torch.float16,safety_checker = None,
requires_safety_checker = False).to(device)
self.noise_scheduler = pipe.scheduler
del pipe
self.tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
)
self.text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
)
self.vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
self.unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path, subfolder="unet", revision=revision
)
self.unet.requires_grad_(False)
self.unet.to(device, dtype=weight_dtype)
self.vae.requires_grad_(False)
self.text_encoder.requires_grad_(False)
self.vae.requires_grad_(False)
self.vae.to(device, dtype=weight_dtype)
self.text_encoder.to(device, dtype=weight_dtype)
print("")
self.network = None
young = get_direction(df, "Young", pinverse, 1000, device)
young = debias(young, "Male", df, pinverse, device)
young = debias(young, "Pointy_Nose", df, pinverse, device)
young = debias(young, "Wavy_Hair", df, pinverse, device)
young = debias(young, "Chubby", df, pinverse, device)
young = debias(young, "No_Beard", df, pinverse, device)
young = debias(young, "Mustache", df, pinverse, device)
self.young = young
pointy = get_direction(df, "Pointy_Nose", pinverse, 1000, device)
pointy = debias(pointy, "Young", df, pinverse, device)
pointy = debias(pointy, "Male", df, pinverse, device)
pointy = debias(pointy, "Wavy_Hair", df, pinverse, device)
pointy = debias(pointy, "Chubby", df, pinverse, device)
pointy = debias(pointy, "Heavy_Makeup", df, pinverse, device)
self.pointy = pointy
wavy = get_direction(df, "Wavy_Hair", pinverse, 1000, device)
wavy = debias(wavy, "Young", df, pinverse, device)
wavy = debias(wavy, "Male", df, pinverse, device)
wavy = debias(wavy, "Pointy_Nose", df, pinverse, device)
wavy = debias(wavy, "Chubby", df, pinverse, device)
wavy = debias(wavy, "Heavy_Makeup", df, pinverse, device)
self.wavy = wavy
thick = get_direction(df, "Bushy_Eyebrows", pinverse, 1000, device)
thick = debias(thick, "Male", df, pinverse, device)
thick = debias(thick, "Young", df, pinverse, device)
thick = debias(thick, "Pointy_Nose", df, pinverse, device)
thick = debias(thick, "Wavy_Hair", df, pinverse, device)
thick = debias(thick, "Mustache", df, pinverse, device)
thick = debias(thick, "No_Beard", df, pinverse, device)
thick = debias(thick, "Sideburns", df, pinverse, device)
thick = debias(thick, "Big_Nose", df, pinverse, device)
thick = debias(thick, "Big_Lips", df, pinverse, device)
thick = debias(thick, "Black_Hair", df, pinverse, device)
thick = debias(thick, "Brown_Hair", df, pinverse, device)
thick = debias(thick, "Pale_Skin", df, pinverse, device)
thick = debias(thick, "Heavy_Makeup", df, pinverse, device)
self.thick = thick
@torch.no_grad()
@spaces.GPU(duration=1000)
def sample_model(self):
self.unet, _, _, _, _ = load_models(self.device)
self.network = sample_weights(self.unet, self.proj, self.mean, self.std, self.v[:, :1000], self.device, factor = 1.00)
@torch.no_grad()
@spaces.GPU(duration=1000)
def inference(self, prompt, negative_prompt, guidance_scale, ddim_steps, seed):
device = self.device
self.unet.to(device)
self.text_encoder.to(device)
self.vae.to(device)
self.network.to(device)
generator = torch.Generator(device=device).manual_seed(seed)
latents = torch.randn(
(1, self.unet.in_channels, 512 // 8, 512 // 8),
generator = generator,
device = self.device
).bfloat16()
text_input = self.tokenizer(prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = self.tokenizer(
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
self.noise_scheduler.set_timesteps(ddim_steps)
latents = latents * self.noise_scheduler.init_noise_sigma
for i,t in enumerate(tqdm.tqdm(self.noise_scheduler.timesteps)):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep=t)
with self.network:
print(latent_model_input.device)
print(self.unet.device)
print(self.text_encoder.device)
print(self.vae.device)
print(self.network.proj.device)
print(self.network.mean.device)
print(self.network.std.device)
print(self.network.v.device)
print(text_embeddings.device)
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
print("after inference")
#guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
return image
@torch.no_grad()
@spaces.GPU
def edit_inference(self, prompt, negative_prompt, guidance_scale, ddim_steps, seed, start_noise, a1, a2, a3, a4):
device = self.device
original_weights = self,network.proj.clone()
#pad to same number of PCs
pcs_original = original_weights.shape[1]
pcs_edits = self.young.shape[1]
padding = torch.zeros((1,pcs_original-pcs_edits)).to(device)
young_pad = torch.cat((self.young, padding), 1)
pointy_pad = torch.cat((self.pointy, padding), 1)
wavy_pad = torch.cat((self.wavy, padding), 1)
thick_pad = torch.cat((self.thick, padding), 1)
edited_weights = original_weights+a1*1e6*young_pad+a2*1e6*pointy_pad+a3*1e6*wavy_pad+a4*2e6*thick_pad
generator = torch.Generator(device=device).manual_seed(seed)
latents = torch.randn(
(1, self.unet.in_channels, 512 // 8, 512 // 8),
generator = generator,
device = self.device
).bfloat16()
text_input = self.tokenizer(prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
noise_scheduler.set_timesteps(ddim_steps)
latents = latents * noise_scheduler.init_noise_sigma
for i,t in enumerate(tqdm.tqdm(self.noise_scheduler.timesteps)):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep=t)
if t>start_noise:
pass
elif t<=start_noise:
self.network.proj = torch.nn.Parameter(edited_weights)
self.network.reset()
with self.network:
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
#guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
#reset weights back to original
self.network.proj = torch.nn.Parameter(original_weights)
self.network.reset()
return image
@spaces.GPU
def sample_then_run(self):
self.sample_model()
prompt = "sks person"
negative_prompt = "low quality, blurry, unfinished, nudity, weapon"
seed = 5
cfg = 3.0
steps = 25
image = self.inference( prompt, negative_prompt, cfg, steps, seed)
torch.save(self.network.proj, "model.pt" )
return image, "model.pt"
class CustomImageDataset(Dataset):
def __init__(self, images, transform=None):
self.images = images
self.transform = transform
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = self.images[idx]
if self.transform:
image = self.transform(image)
return image
@spaces.GPU
def invert(self, image, mask, pcs=10000, epochs=400, weight_decay = 1e-10, lr=1e-1):
del unet
del network
unet, _, _, _, _ = load_models(device)
proj = torch.zeros(1,pcs).bfloat16().to(device)
network = LoRAw2w( proj, mean, std, v[:, :pcs],
unet,
rank=1,
multiplier=1.0,
alpha=27.0,
train_method="xattn-strict"
).to(device, torch.bfloat16)
### load mask
mask = transforms.Resize((64,64), interpolation=transforms.InterpolationMode.BILINEAR)(mask)
mask = torchvision.transforms.functional.pil_to_tensor(mask).unsqueeze(0).to(device).bfloat16()[:,0,:,:].unsqueeze(1)
### check if an actual mask was draw, otherwise mask is just all ones
if torch.sum(mask) == 0:
mask = torch.ones((1,1,64,64)).to(device).bfloat16()
### single image dataset
image_transforms = transforms.Compose([transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.RandomCrop(512),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
train_dataset = CustomImageDataset(image, transform=image_transforms)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=True)
### optimizer
optim = torch.optim.Adam(network.parameters(), lr=lr, weight_decay=weight_decay)
### training loop
unet.train()
for epoch in tqdm.tqdm(range(epochs)):
for batch in train_dataloader:
### prepare inputs
batch = batch.to(device).bfloat16()
latents = vae.encode(batch).latent_dist.sample()
latents = latents*0.18215
noise = torch.randn_like(latents)
bsz = latents.shape[0]
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
text_input = tokenizer("sks person", padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
### loss + sgd step
with network:
model_pred = unet(noisy_latents, timesteps, text_embeddings).sample
loss = torch.nn.functional.mse_loss(mask*model_pred.float(), mask*noise.float(), reduction="mean")
optim.zero_grad()
loss.backward()
optim.step()
### return optimized network
return network
@spaces.GPU
def run_inversion(self, dict, pcs, epochs, weight_decay,lr):
init_image = dict["image"].convert("RGB").resize((512, 512))
mask = dict["mask"].convert("RGB").resize((512, 512))
network = invert([init_image], mask, pcs, epochs, weight_decay,lr)
#sample an image
prompt = "sks person"
negative_prompt = "low quality, blurry, unfinished, nudity"
seed = 5
cfg = 3.0
steps = 25
image = inference( prompt, negative_prompt, cfg, steps, seed)
torch.save(network.proj, "model.pt" )
return image, "model.pt"
@spaces.GPU
def file_upload(self, file):
proj = torch.load(file.name).to(device)
#pad to 10000 Principal components to keep everything consistent
pcs = proj.shape[1]
padding = torch.zeros((1,10000-pcs)).to(device)
proj = torch.cat((proj, padding), 1)
unet, _, _, _, _ = load_models(device)
network = LoRAw2w( proj, mean, std, v[:, :10000],
unet,
rank=1,
multiplier=1.0,
alpha=27.0,
train_method="xattn-strict"
).to(device, torch.bfloat16)
prompt = "sks person"
negative_prompt = "low quality, blurry, unfinished, nudity"
seed = 5
cfg = 3.0
steps = 25
image = inference( prompt, negative_prompt, cfg, steps, seed)
return image
intro = """
<div style="display: flex;align-items: center;justify-content: center">
<h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block"><em>weights2weights</em> Demo</h1>
<h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Interpreting the Weight Space of Customized Diffusion Models</h3>
</div>
<p style="font-size: 0.95rem;margin: 0rem;line-height: 1.2em;margin-top:1em;display: inline-block">
<a href="https://snap-research.github.io/weights2weights/" target="_blank">Project Page</a> | <a href="https://arxiv.org/abs/2406.09413" target="_blank">Paper</a>
| <a href="https://github.com/snap-research/weights2weights" target="_blank">Code</a> |
<a href="https://huggingface.co/spaces/Snapchat/w2w-demo?duplicate=true" target="_blank" style="
display: inline-block;
">
<img style="margin-top: -1em;margin-bottom: 0em;position: absolute;" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a>
</p>
"""
with gr.Blocks(css="style.css") as demo:
model = main()
gr.HTML(intro)
gr.Markdown("""<div style="text-align: justify;"> In this demo, you can get an identity-encoding model by sampling or inverting. To use a model previously downloaded from this demo see \"Uploading a model\" in the Advanced Options. Next, you can generate new images from it, or edit the identity encoded in the model and generate images from the edited model. We provide detailed instructions and tips at the bottom of the page.""")
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown("""1) Either sample a new model, or upload an image (optionally draw a mask over the head) and click `invert`.""")
sample = gr.Button("🎲 Sample New Model")
input_image = gr.ImageEditor(elem_id="image_upload", type='pil', label="Reference Identity",
width=512, height=512)
with gr.Row():
invert_button = gr.Button("⬆️ Invert")
with gr.Column():
gr.Markdown("""2) Generate images of the sampled/inverted identity or edit the identity with the sliders and generate new images with various prompts and seeds.""")
gallery = gr.Image(label="Generated Image",height=512, width=512, interactive=False)
submit = gr.Button("Generate")
prompt = gr.Textbox(label="Prompt",
info="Make sure to include 'sks person'" ,
placeholder="sks person",
value="sks person")
seed = gr.Number(value=5, label="Seed", precision=0, interactive=True)
# Editing
with gr.Column():
with gr.Row():
a1 = gr.Slider(label="- Young +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
a2 = gr.Slider(label="- Pointy Nose +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
with gr.Row():
a3 = gr.Slider(label="- Curly Hair +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
a4 = gr.Slider(label="- Thick Eyebrows +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
with gr.Accordion("Advanced Options", open=False):
with gr.Tab("Inversion"):
with gr.Row():
lr = gr.Number(value=1e-1, label="Learning Rate", interactive=True)
pcs = gr.Slider(label="# Principal Components", value=10000, step=1, minimum=1, maximum=10000, interactive=True)
with gr.Row():
epochs = gr.Slider(label="Epochs", value=800, step=1, minimum=1, maximum=2000, interactive=True)
weight_decay = gr.Number(value=1e-10, label="Weight Decay", interactive=True)
with gr.Tab("Sampling"):
with gr.Row():
cfg= gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
steps = gr.Slider(label="Inference Steps", value=25, step=1, minimum=0, maximum=100, interactive=True)
with gr.Row():
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, nudity, weapon", value="low quality, blurry, unfinished, nudity, weapon")
injection_step = gr.Slider(label="Injection Step", value=800, step=1, minimum=0, maximum=1000, interactive=True)
with gr.Tab("Uploading a model"):
gr.Markdown("""<div style="text-align: justify;">Upload a model below downloaded from this demo.""")
file_input = gr.File(label="Upload Model", container=True)
gr.Markdown("""<div style="text-align: justify;"> After sampling a new model or inverting, you can download the model below.""")
with gr.Row():
file_output = gr.File(label="Download Sampled/Inverted Model", container=True, interactive=False)
invert_button.click(fn=model.run_inversion,
inputs=[input_image, pcs, epochs, weight_decay,lr],
outputs = [input_image, file_output])
sample.click(fn=model.sample_then_run, outputs=[input_image, file_output])
submit.click(
fn=model.edit_inference, inputs=[prompt, negative_prompt, cfg, steps, seed, injection_step, a1, a2, a3, a4], outputs=[gallery]
)
file_input.change(fn=model.file_upload, inputs=file_input, outputs = gallery)
help_text1 = """
<b>Instructions</b>:
1. To get results faster without waiting in queue, you can duplicate into a private space with an A100 GPU.
2. To begin, you will have to get an identity-encoding model. You can either sample one from *weights2weights* space by clicking `Sample New Model` or by uploading an image and clicking `invert` to invert the identity into a model. You can optionally draw over the head to define a mask in the image for better results. Sampling a model takes around 10 seconds and inversion takes around 2 minutes. After this is done, you can optionally download this model for later use. A model can be uploaded in the \"Uploading a model\" tab in the `Advanced Options`.
3. After getting a model, an image of the identity will be displayed on the right. You can sample from the model by changing seeds as well as prompts and then clicking `Generate`. Make sure to include \"sks person\" in your prompt to keep the same identity.
4. The identity in the model can be edited by changing the sliders for various attributes. After clicking `Generate`, you can see how the identity has changed and the effects are maintained across different seeds and prompts.
"""
help_text2 = """<b>Tips</b>:
1. Editing and Identity Generation
* If you are interested in preserving more of the image during identity-editing (i.e., where the same seed and prompt results in the same image with only the identity changed), you can play with the "Injection Step" parameter in the \"Sampling\" tab in the `Advanced Options`. During the first *n* timesteps, the original model's weights will be used, and then the edited weights will be set during the remaining steps. Values closer to 1000 will set the edited weights early, having a more pronounced effect, which may disrupt some semantics and structure of the generated image. Lower values will set the edited weights later, better preserving image context. We notice that around 600-800 tends to produce the best results. Larger values in the range (700-1000) are helpful for more global attribute changes, while smaller (400-700) can be used for more finegrained edits. Although it is not always needed.
* You can play around with negative prompts, number of inference steps, and CFG in the \"Sampling\" tab in the `Advanced Options` to affect the ultimate image quality.
* Sometimes the identity will not be perfectly consistent (e.g., there might be small variations of the face) when you use some seeds or prompts. This is a limitation of our method as well as an open-problem in personalized models.
2. Inversion
* To obtain the best results for inversion, upload a high resolution photo of the face with minimal occlusion. It is recommended to draw over the face and hair to define a mask. But inversion should still work generally for non-closeup face shots.
* For inverting a realistic photo of an identity, typically 800 epochs with lr=1e-1 and 10,000 principal components (PCs) works well. If the resulting generations have artifacted and unrealstic textures, there is probably overfitting and you may want to reduce the number of epochs or learning rate, or play with weight decay. If the generations do not look like the input photo, then you may want to increase the number of epochs.
* For inverting out-of-distribution identities, such as artistic renditions of people or non-humans (e.g. the ones shown in the paper), it is recommended to use 1000 PCs, lr=1, and train for 800 epochs.
* Note that if you change the number of PCs, you will probably need to change the learning rate. For less PCs, higher learning rates are typically required."""
gr.Markdown(help_text1)
gr.Markdown(help_text2)
demo.queue().launch()
|